Suppr超能文献

利用嵌入金刚石的基底对活细胞的牵引力和温度动态进行多模态分析。

Multimodal analysis of traction forces and the temperature dynamics of living cells with a diamond-embedded substrate.

作者信息

Kołodziej Tomasz, Mrózek Mariusz, Sengottuvel Saravanan, Głowacki Maciej J, Ficek Mateusz, Gawlik Wojciech, Rajfur Zenon, Wojciechowski Adam M

机构信息

Jagiellonian University Medical School, Faculty of Pharmacy, Kraków, Poland.

Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland.

出版信息

Biomed Opt Express. 2024 Jun 3;15(7):4024-4043. doi: 10.1364/BOE.524293. eCollection 2024 Jul 1.

Abstract

Cells and tissues are constantly exposed to chemical and physical signals that regulate physiological and pathological processes. This study explores the integration of two biophysical methods: traction force microscopy (TFM) and optically detected magnetic resonance (ODMR) to concurrently assess cellular traction forces and the local relative temperature. We present a novel elastic substrate with embedded nitrogen-vacancy microdiamonds that facilitate ODMR-TFM measurements. Optimization efforts focused on minimizing sample illumination and experiment duration to mitigate biological perturbations. Our hybrid ODMR-TFM technique yields TFM maps and achieves approximately 1 K precision in relative temperature measurements. Our setup employs a simple wide-field fluorescence microscope with standard components, demonstrating the feasibility of the proposed technique in life science laboratories. By elucidating the physical aspects of cellular behavior beyond the existing methods, this approach opens avenues for a deeper understanding of cellular processes and may inspire the development of diverse biomedical applications.

摘要

细胞和组织不断受到调节生理和病理过程的化学和物理信号的影响。本研究探索了两种生物物理方法的整合:牵引力显微镜(TFM)和光探测磁共振(ODMR),以同时评估细胞牵引力和局部相对温度。我们展示了一种嵌入氮空位微金刚石的新型弹性基板,便于进行ODMR-TFM测量。优化工作重点是尽量减少样品照明和实验持续时间,以减轻生物扰动。我们的混合ODMR-TFM技术可生成TFM图,并在相对温度测量中实现约1 K的精度。我们的装置采用了配备标准组件的简单宽场荧光显微镜,证明了该技术在生命科学实验室中的可行性。通过阐明现有方法之外的细胞行为的物理方面,这种方法为更深入理解细胞过程开辟了道路,并可能激发各种生物医学应用的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ed5/11249686/6fe4fc3f98c5/boe-15-7-4024-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验