Suppr超能文献

量化红外神经刺激引起的组织温度变化:数值模拟与磁共振测温法

Quantifying tissue temperature changes induced by infrared neural stimulation: numerical simulation and MR thermometry.

作者信息

Xi Yinghua, Schriver Kenneth E, Roe Anna Wang, Zhang Xiaotong

机构信息

Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou 310027, China.

MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China.

出版信息

Biomed Opt Express. 2024 Jun 4;15(7):4111-4131. doi: 10.1364/BOE.530854. eCollection 2024 Jul 1.

Abstract

Infrared neural stimulation (INS) delivered via short pulse trains is an innovative tool that has potential for us use for studying brain function and circuitry, brain machine interface, and clinical use. The prevailing mechanism for INS involves the conversion of light energy into thermal transients, leading to neuronal membrane depolarization. Due to the potential risks of thermal damage, it is crucial to ensure that the resulting local temperature increases are within non-damaging limits for brain tissues. Previous studies have estimated damage thresholds using histological methods and have modeled thermal effects based on peripheral nerves. However, additional quantitative measurements and modeling studies are needed for the central nervous system. Here, we performed 7 T MRI thermometry on rat brains following the delivery of infrared pulse trains at five different intensities from 0.1-1.0 J/cm (each pulse train 1,875 nm, 25 us/pulse, 200 Hz, 0.5 s duration, delivered through 200 µm fiber). Additionally, we utilized the General BioHeat Transfer Model (GBHTM) to simulate local temperature changes in perfused brain tissues while delivering these laser energies to tissue (with optical parameters of human skin) via three different sizes of optical fibers at five energy intensities. The simulation results clearly demonstrate that a 0.5 second INS pulse train induces an increase followed by an immediate drop in temperature at stimulation offset. The delivery of multiple pulse trains with 2.5 s interstimulus interval (ISI) leads to rising temperatures that plateau. Both thermometry and modeling results show that, using parameters that are commonly used in biological applications (200 µm diameter fiber, 0.1-1.0 J/cm), the final temperature increase at the end of the 60 sec stimuli duration does not exceed 1°C with stimulation values of 0.1-0.5 J/cm and does not exceed 2°C with stimulation values of up to 1.0 J/cm. Thus, the maximum temperature rise is consistent with the thermal damage threshold reported in previous studies. This study provides a quantitative evaluation of the temperature changes induced by INS, suggesting that existing practices pose minimal major safety concerns for biological tissues.

摘要

通过短脉冲序列进行的红外神经刺激(INS)是一种创新工具,具有用于研究脑功能和神经回路、脑机接口以及临床应用的潜力。INS的主要机制涉及将光能转化为热瞬变,从而导致神经元膜去极化。由于存在热损伤的潜在风险,确保由此产生的局部温度升高在脑组织的非损伤范围内至关重要。先前的研究使用组织学方法估计了损伤阈值,并基于外周神经对热效应进行了建模。然而,中枢神经系统还需要额外的定量测量和建模研究。在此,我们在大鼠脑上进行了7T磁共振测温,在以0.1 - 1.0 J/cm的五种不同强度施加红外脉冲序列后(每个脉冲序列为1,875 nm,25 μs/脉冲,200 Hz,持续时间0.5 s,通过200μm光纤传输)。此外,我们利用通用生物热传递模型(GBHTM)来模拟灌注脑组织中的局部温度变化,同时通过三种不同尺寸的光纤在五种能量强度下将这些激光能量传递到组织(具有人体皮肤的光学参数)。模拟结果清楚地表明,0.5秒的INS脉冲序列会导致温度升高,随后在刺激结束时立即下降。以2.5秒的刺激间隔(ISI)传递多个脉冲序列会导致温度上升并趋于平稳。测温与建模结果均表明,使用生物学应用中常用的参数(直径200μm的光纤,0.1 - 1.0 J/cm),在60秒刺激持续时间结束时,当刺激值为0.1 - 0.5 J/cm时,最终温度升高不超过1°C,当刺激值高达1.0 J/cm时,最终温度升高不超过2°C。因此,最大温度上升与先前研究报道的热损伤阈值一致。本研究对INS诱导的温度变化进行了定量评估,表明现有做法对生物组织造成的主要安全隐患极小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09d7/11249695/dc1696245d51/boe-15-7-4111-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验