中红外刺激对神经元信号和行为的非热可逆控制。
Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation.
机构信息
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
出版信息
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2015685118.
Various neuromodulation approaches have been employed to alter neuronal spiking activity and thus regulate brain functions and alleviate neurological disorders. Infrared neural stimulation (INS) could be a potential approach for neuromodulation because it requires no tissue contact and possesses a high spatial resolution. However, the risk of overheating and an unclear mechanism hamper its application. Here we show that midinfrared stimulation (MIRS) with a specific wavelength exerts nonthermal, long-distance, and reversible modulatory effects on ion channel activity, neuronal signaling, and sensorimotor behavior. Patch-clamp recording from mouse neocortical pyramidal cells revealed that MIRS readily provides gain control over spiking activities, inhibiting spiking responses to weak inputs but enhancing those to strong inputs. MIRS also shortens action potential (AP) waveforms by accelerating its repolarization, through an increase in voltage-gated K (but not Na) currents. Molecular dynamics simulations further revealed that MIRS-induced resonance vibration of -C=O bonds at the K channel ion selectivity filter contributes to the K current increase. Importantly, these effects are readily reversible and independent of temperature increase. At the behavioral level in larval zebrafish, MIRS modulates startle responses by sharply increasing the slope of the sensorimotor input-output curve. Therefore, MIRS represents a promising neuromodulation approach suitable for clinical application.
各种神经调节方法已被用于改变神经元的放电活动,从而调节大脑功能和减轻神经疾病。红外神经刺激(INS)可能是一种潜在的神经调节方法,因为它不需要组织接触,并且具有很高的空间分辨率。然而,过热的风险和不清楚的机制阻碍了它的应用。在这里,我们表明,具有特定波长的中红外刺激(MIRS)对离子通道活性、神经元信号和感觉运动行为产生非热、远距离和可逆的调节作用。从小鼠新皮层锥体细胞的膜片钳记录显示,MIRS 很容易对放电活动进行增益控制,抑制对弱输入的放电反应,但增强对强输入的放电反应。MIRS 还通过增加电压门控 K(而不是 Na)电流来加速其复极化,从而缩短动作电位(AP)波形。分子动力学模拟进一步表明,MIRS 诱导 K 通道离子选择性过滤器中-C=O 键的共振振动有助于增加 K 电流。重要的是,这些效应很容易逆转,与温度升高无关。在幼虫斑马鱼的行为水平上,MIRS 通过急剧增加感觉运动输入-输出曲线的斜率来调节惊跳反应。因此,MIRS 代表了一种有前途的神经调节方法,适合临床应用。