Suppr超能文献

一种基于局部表型耐药数据的贝叶斯模型,用于指导经验性抗生素升级决策。

A Bayesian Model Based on Local Phenotypic Resistance Data to Inform Empiric Antibiotic Escalation Decisions.

作者信息

Bamber Ranjeet, Sullivan Brian, Gorman Léo, Lee Winnie W Y, Avison Matthew B, Dowsey Andrew W, Williams Philip B

机构信息

Department of Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK.

Jean Golding Institute, University of Bristol, Bristol, UK.

出版信息

Infect Dis Ther. 2024 Sep;13(9):1963-1981. doi: 10.1007/s40121-024-01011-3. Epub 2024 Jul 18.

Abstract

INTRODUCTION

Clinicians commonly escalate empiric antibiotic therapy due to poor clinical progress without microbiology guidance. When escalating, they should take account of how resistance to an initial antibiotic affects the probability of resistance to subsequent options. The term "escalation antibiogram" (EA) has been coined to describe this concept. One difficulty when applying the EA concept to clinical practice is understanding the uncertainty in results and how this changes for specific patient subgroups.

METHODS

A Bayesian model was developed to estimate antibiotic resistance rates in Gram-negative bloodstream infections based on phenotypic resistance data. The model generates a series of "credible" curves to fit the resistance data, each with the same probability of representing the true rate given the inherent uncertainty. To avoid overfitting, an integrated penalisation term adaptively smooths the curves given the level of evidence.

RESULTS

Rates of resistance to empiric first-choice and potential escalation antibiotics were calculated for the whole hospitalised population based on 10,486 individual bloodstream infections, and for a range of specific patient groups, including ICU (intensive care unit), haematolo-oncology, and paediatric patients. The model generated an expected value (posterior mean) with 95% credible interval to illustrate uncertainty, based on the size of the patient subgroup. For example, the posterior means of piperacillin/tazobactam resistance rates in Gram-negative bloodstream infection are different between patients on ICU and the general hospital population: 27.3% (95% CI 18.1-37.2 vs. 13.4% 95% CI 11.0-16.1) respectively. The model can also estimate the probability of inferiority between two antibiotics for a specific patient population. Differences in optimal escalation antibiotic options between specific patient groups were noted.

CONCLUSIONS

EA analysis informed by our Bayesian model is a useful tool to support empiric antibiotic switches, providing an estimate of local resistance rates, and a comparison of antibiotic options with a measure of the uncertainty in the data. We demonstrate that EAs calculated for the whole hospital population cannot be assumed to apply to specific patient group.

摘要

引言

临床医生通常会在缺乏微生物学指导且临床进展不佳的情况下加大经验性抗生素治疗力度。在加大治疗力度时,他们应考虑对初始抗生素的耐药性如何影响对后续选择产生耐药性的可能性。“升级抗菌谱”(EA)这一术语已被创造出来描述这一概念。将EA概念应用于临床实践时的一个困难在于理解结果中的不确定性以及这种不确定性如何因特定患者亚组而变化。

方法

开发了一种贝叶斯模型,以根据表型耐药数据估计革兰氏阴性血流感染中的抗生素耐药率。该模型生成一系列“可信”曲线以拟合耐药数据,鉴于内在的不确定性,每条曲线代表真实率的概率相同。为避免过度拟合,一个综合惩罚项会根据证据水平对曲线进行自适应平滑处理。

结果

基于10486例个体血流感染病例,计算了整个住院人群以及一系列特定患者群体(包括重症监护病房(ICU)、血液肿瘤学和儿科患者)对经验性首选抗生素和潜在升级抗生素的耐药率。该模型根据患者亚组的规模生成了一个带有95%可信区间的期望值(后验均值),以说明不确定性。例如,ICU患者和普通医院人群中革兰氏阴性血流感染对哌拉西林/他唑巴坦耐药率的后验均值不同:分别为27.3%(95%可信区间18.1 - 37.2)和13.4%(95%可信区间11.0 - 16.1)。该模型还可以估计特定患者群体中两种抗生素之间疗效较差的概率。注意到特定患者群体之间最佳升级抗生素选择存在差异。

结论

由我们的贝叶斯模型提供信息的EA分析是支持经验性抗生素更换的有用工具,可提供局部耐药率估计,并对抗生素选择进行比较以及对数据中的不确定性进行度量。我们证明,不能假定为整个医院人群计算的EA适用于特定患者群体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8437/11343932/f5b4f5936284/40121_2024_1011_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验