Walasek Nicole, Young Ethan S, Frankenhuis Willem E
Department of Psychology, Utrecht University.
Psychol Methods. 2024 Jul 18. doi: 10.1037/met0000651.
Psychologists tend to rely on verbal descriptions of the environment over time, using terms like "unpredictable," "variable," and "unstable." These terms are often open to different interpretations. This ambiguity blurs the match between constructs and measures, which creates confusion and inconsistency across studies. To better characterize the environment, the field needs a shared framework that organizes descriptions of the environment over time in clear terms: as statistical definitions. Here, we first present such a framework, drawing on theory developed in other disciplines, such as biology, anthropology, ecology, and economics. Then we apply our framework by quantifying "unpredictability" in a publicly available, longitudinal data set of crime rates in New York City (NYC) across 15 years. This case study shows that the correlations between different "unpredictability statistics" across regions are only moderate. This means that regions within NYC rank differently on unpredictability depending on which definition is used and at which spatial scale the statistics are computed. Additionally, we explore associations between unpredictability statistics and measures of unemployment, poverty, and educational attainment derived from publicly available NYC survey data. In our case study, these measures are associated with mean levels in crime rates but hardly with unpredictability in crime rates. Our case study illustrates the merits of using a formal framework for disentangling different properties of the environment. To facilitate the use of our framework, we provide a friendly, step-by-step guide for identifying the structure of the environment in repeated measures data sets. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
随着时间的推移,心理学家倾向于依赖对环境的文字描述,使用诸如“不可预测的”“多变的”和“不稳定的”等术语。这些术语往往有不同的解释。这种模糊性模糊了构念与测量之间的匹配,从而在各项研究中造成了混乱和不一致。为了更好地描述环境,该领域需要一个共享框架,以便用清晰的术语对环境随时间的描述进行组织:作为统计定义。在此,我们首先提出这样一个框架,借鉴生物学、人类学、生态学和经济学等其他学科发展的理论。然后,我们通过对纽约市(NYC)15年公开可用的纵向犯罪率数据集的“不可预测性”进行量化,来应用我们的框架。这个案例研究表明,不同地区的不同“不可预测性统计量”之间的相关性只是中等程度。这意味着,根据所使用的定义以及统计量计算的空间尺度不同,纽约市内各地区在不可预测性方面的排名也不同。此外,我们还探讨了不可预测性统计量与从纽约市公开调查数据得出的失业率、贫困率和教育程度测量指标之间的关联。在我们的案例研究中,这些指标与犯罪率的平均水平相关,但与犯罪率的不可预测性几乎没有关联。我们的案例研究说明了使用正式框架来厘清环境不同属性的优点。为了便于使用我们的框架,我们提供了一份友好的、逐步的指南,用于在重复测量数据集中识别环境结构。(PsycInfo数据库记录(c)2024美国心理学会,保留所有权利)