Suppr超能文献

利用深度学习估算颅骨 X 光图像中的婴儿年龄。

Estimating infant age from skull X-ray images using deep learning.

机构信息

Department of Neurosurgery, College of Medicine, Hallym University Sacred Heart Hospital, Hallym University, 22, Gwanpyeong-Ro 170Beon-Gil, Dongan-Gu, Anyang-Si, Gyeonggi-Do, 14068, Republic of Korea.

Interdisciplinary Program for Bioinformatics, Graduate School, Seoul National University, Seoul, Republic of Korea.

出版信息

Sci Rep. 2024 Jul 18;14(1):16600. doi: 10.1038/s41598-024-64489-4.

Abstract

This study constructed deep learning models using plain skull radiograph images to predict the accurate postnatal age of infants under 12 months. Utilizing the results of the trained deep learning models, it aimed to evaluate the feasibility of employing major changes visible in skull X-ray images for assessing postnatal cranial development through gradient-weighted class activation mapping. We developed DenseNet-121 and EfficientNet-v2-M convolutional neural network models to analyze 4933 skull X-ray images collected from 1343 infants. Notably, allowing for a ± 1 month error margin, DenseNet-121 reached a maximum corrected accuracy of 79.4% for anteroposterior (AP) views (average: 78.0 ± 1.5%) and 84.2% for lateral views (average: 81.1 ± 2.9%). EfficientNet-v2-M reached a maximum corrected accuracy 79.1% for AP views (average: 77.0 ± 2.3%) and 87.3% for lateral views (average: 85.1 ± 2.5%). Saliency maps identified critical discriminative areas in skull radiographs, including the coronal, sagittal, and metopic sutures in AP skull X-ray images, and the lambdoid suture and cortical bone density in lateral images, marking them as indicators for evaluating cranial development. These findings highlight the precision of deep learning in estimating infant age through non-invasive methods, offering the progress for clinical diagnostics and developmental assessment tools.

摘要

本研究利用普通颅骨 X 线片构建深度学习模型,以预测 12 个月以下婴儿的准确出生后年龄。利用训练好的深度学习模型的结果,旨在通过梯度加权类激活映射评估颅骨 X 线片上可见的主要变化用于评估产后颅发育的可行性。我们开发了 DenseNet-121 和 EfficientNet-v2-M 卷积神经网络模型,以分析从 1343 名婴儿中收集的 4933 张颅骨 X 射线图像。值得注意的是,在允许 ±1 个月误差的情况下,DenseNet-121 在前后(AP)视图中的最大校正准确率达到 79.4%(平均:78.0±1.5%),在侧视图中的最大校正准确率达到 84.2%(平均:81.1±2.9%)。EfficientNet-v2-M 在 AP 视图中的最大校正准确率为 79.1%(平均:77.0±2.3%),在侧视图中的最大校正准确率为 87.3%(平均:85.1±2.5%)。显著图确定了颅骨 X 射线片中的关键鉴别区域,包括 AP 颅骨 X 射线图像中的冠状缝、矢状缝和额缝,以及侧视图中的人字缝和皮质骨密度,将它们标记为评估颅骨发育的指标。这些发现突出了深度学习通过非侵入性方法估计婴儿年龄的精确性,为临床诊断和发育评估工具提供了进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17a9/11258236/df988cb42e9d/41598_2024_64489_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验