Suppr超能文献

使用基于循环生成对抗网络的深度学习模型从UTE-MRI生成合成颞骨CT:超越CT-MR成像融合

Synthetic temporal bone CT generation from UTE-MRI using a cycleGAN-based deep learning model: advancing beyond CT-MR imaging fusion.

作者信息

You Sung-Hye, Cho Yongwon, Kim Byungjun, Kim Jeeho, Im Gi Jung, Park Euyhyun, Kim InSeong, Kim Kyung Min, Kim Bo Kyu

机构信息

Department of Radiology, Anam Hospital, Korea University College of Medicine, Seoul, Korea.

Biomedical Research Center, Korea University College of Medicine, Seoul, Korea.

出版信息

Eur Radiol. 2025 Jan;35(1):38-48. doi: 10.1007/s00330-024-10967-2. Epub 2024 Jul 18.

Abstract

OBJECTIVES

The aim of this study is to develop a deep-learning model to create synthetic temporal bone computed tomography (CT) images from ultrashort echo-time magnetic resonance imaging (MRI) scans, thereby addressing the intrinsic limitations of MRI in localizing anatomic landmarks in temporal bone CT.

MATERIALS AND METHODS

This retrospective study included patients who underwent temporal MRI and temporal bone CT within one month between April 2020 and March 2023. These patients were randomly divided into training and validation datasets. A CycleGAN model for generating synthetic temporal bone CT images was developed using temporal bone CT and pointwise encoding-time reduction with radial acquisition (PETRA). To assess the model's performance, the pixel count in mastoid air cells was measured. Two neuroradiologists evaluated the successful generation rates of 11 anatomical landmarks.

RESULTS

A total of 102 patients were included in this study (training dataset, n = 54, mean age 58 ± 14, 34 females (63%); validation dataset, n = 48, mean age 61 ± 13, 29 females (60%)). In the pixel count of mastoid air cells, no difference was observed between synthetic and real images (679 ± 342 vs 738 ± 342, p = 0.13). For the six major anatomical sites, the positive generation rates were 97-100%, whereas those of the five major anatomical structures ranged from 24% to 83%.

CONCLUSION

We developed a model to generate synthetic temporal bone CT images using PETRA MRI. This model can provide information regarding the major anatomic sites of the temporal bone using MRI.

CLINICAL RELEVANCE STATEMENT

The proposed algorithm addresses the primary limitations of MRI in localizing anatomic sites within the temporal bone.

KEY POINTS

CT is preferred for imaging the temporal bone, but has limitations in differentiating pathology there. The model achieved a high success rate in generating synthetic images of six anatomic sites. This can overcome the limitations of MRI in visualizing key anatomic sites in the temporal skull.

摘要

目的

本研究旨在开发一种深度学习模型,以从超短回波时间磁共振成像(MRI)扫描中创建颞骨计算机断层扫描(CT)合成图像,从而解决MRI在颞骨CT中定位解剖标志方面的固有局限性。

材料与方法

这项回顾性研究纳入了在2020年4月至2023年3月期间的一个月内接受颞部MRI和颞骨CT检查的患者。这些患者被随机分为训练数据集和验证数据集。使用颞骨CT和径向采集的逐点编码时间减少(PETRA)开发了一种用于生成颞骨CT合成图像的循环生成对抗网络(CycleGAN)模型。为了评估该模型的性能,测量了乳突气房的像素计数。两名神经放射科医生评估了11个解剖标志的成功生成率。

结果

本研究共纳入102例患者(训练数据集,n = 54,平均年龄58±14岁,34名女性(63%);验证数据集,n = 48,平均年龄61±13岁,29名女性(60%))。在乳突气房的像素计数方面,合成图像和真实图像之间未观察到差异(679±342对738±342,p = 0.13)。对于六个主要解剖部位,阳性生成率为97% - 100%,而五个主要解剖结构的阳性生成率在24%至83%之间。

结论

我们开发了一种使用PETRA MRI生成颞骨CT合成图像的模型。该模型可以利用MRI提供有关颞骨主要解剖部位的信息。

临床相关性声明

所提出的算法解决了MRI在颞骨内解剖部位定位方面的主要局限性。

关键点

CT是颞骨成像的首选,但在区分颞骨病变方面存在局限性。该模型在生成六个解剖部位的合成图像方面取得了较高的成功率。这可以克服MRI在可视化颞骨关键解剖部位方面的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验