Suppr超能文献

使用生成对抗网络 (GANs) 为放射学应用创建人工图像 - 系统评价。

Creating Artificial Images for Radiology Applications Using Generative Adversarial Networks (GANs) - A Systematic Review.

机构信息

Department of Diagnostic Imaging, Chaim Sheba Medical Center, Affiliated to the Sackler School of Medicine, Tel-Aviv University, Emek Haela St. 1, Ramat Gan, Israel 52621; Deep Vision Lab, Sheba Medical Center, Tel Hashomer, Israel.

Department of Diagnostic Imaging, Chaim Sheba Medical Center, Affiliated to the Sackler School of Medicine, Tel-Aviv University, Emek Haela St. 1, Ramat Gan, Israel 52621; Deep Vision Lab, Sheba Medical Center, Tel Hashomer, Israel.

出版信息

Acad Radiol. 2020 Aug;27(8):1175-1185. doi: 10.1016/j.acra.2019.12.024. Epub 2020 Feb 5.

Abstract

RATIONALE AND OBJECTIVES

Generative adversarial networks (GANs) are deep learning models aimed at generating fake realistic looking images. These novel models made a great impact on the computer vision field. Our study aims to review the literature on GANs applications in radiology.

MATERIALS AND METHODS

This systematic review followed the PRISMA guidelines. Electronic datasets were searched for studies describing applications of GANs in radiology. We included studies published up-to September 2019.

RESULTS

Data were extracted from 33 studies published between 2017 and 2019. Eighteen studies focused on CT images generation, ten on MRI, three on PET/MRI and PET/CT, one on ultrasound and one on X-ray. Applications in radiology included image reconstruction and denoising for dose and scan time reduction (fourteen studies), data augmentation (six studies), transfer between modalities (eight studies) and image segmentation (five studies). All studies reported that generated images improved the performance of the developed algorithms.

CONCLUSION

GANs are increasingly studied for various radiology applications. They enable the creation of new data, which can be used to improve clinical care, education and research.

摘要

原理和目的

生成对抗网络(GAN)是一种深度学习模型,旨在生成逼真的图像。这些新颖的模型在计算机视觉领域产生了重大影响。我们的研究旨在回顾 GAN 在放射学中的应用文献。

材料和方法

本系统评价遵循 PRISMA 指南。电子数据库中搜索描述 GAN 在放射学中应用的研究。我们纳入了截至 2019 年 9 月发表的研究。

结果

从 2017 年至 2019 年发表的 33 项研究中提取数据。18 项研究专注于 CT 图像生成,10 项研究专注于 MRI,3 项研究专注于 PET/MRI 和 PET/CT,1 项研究专注于超声,1 项研究专注于 X 射线。放射学中的应用包括图像重建和降噪以减少剂量和扫描时间(14 项研究)、数据增强(6 项研究)、模态间转换(8 项研究)和图像分割(5 项研究)。所有研究报告称,生成的图像提高了开发算法的性能。

结论

GAN 越来越多地用于各种放射学应用。它们能够创建新的数据,可用于改善临床护理、教育和研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验