Suppr超能文献

用于支持头部气骨分离的超短回波(UTE)图像的定量表征。

Quantitative characterizations of ultrashort echo (UTE) images for supporting air-bone separation in the head.

作者信息

Hsu Shu-Hui, Cao Yue, Lawrence Theodore S, Tsien Christina, Feng Mary, Grodzki David M, Balter James M

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109 USA.

出版信息

Phys Med Biol. 2015 Apr 7;60(7):2869-80. doi: 10.1088/0031-9155/60/7/2869. Epub 2015 Mar 17.

Abstract

Accurate separation of air and bone is critical for creating synthetic CT from MRI to support Radiation Oncology workflow. This study compares two different ultrashort echo-time sequences in the separation of air from bone, and evaluates post-processing methods that correct intensity nonuniformity of images and account for intensity gradients at tissue boundaries to improve this discriminatory power. CT and MRI scans were acquired on 12 patients under an institution review board-approved prospective protocol. The two MRI sequences tested were ultra-short TE imaging using 3D radial acquisition (UTE), and using pointwise encoding time reduction with radial acquisition (PETRA). Gradient nonlinearity correction was applied to both MR image volumes after acquisition. MRI intensity nonuniformity was corrected by vendor-provided normalization methods, and then further corrected using the N4itk algorithm. To overcome the intensity-gradient at air-tissue boundaries, spatial dilations, from 0 to 4 mm, were applied to threshold-defined air regions from MR images. Receiver operating characteristic (ROC) analyses, by comparing predicted (defined by MR images) versus 'true' regions of air and bone (defined by CT images), were performed with and without residual bias field correction and local spatial expansion. The post-processing corrections increased the areas under the ROC curves (AUC) from 0.944 ± 0.012 to 0.976 ± 0.003 for UTE images, and from 0.850 ± 0.022 to 0.887 ± 0.012 for PETRA images, compared to without corrections. When expanding the threshold-defined air volumes, as expected, sensitivity of air identification decreased with an increase in specificity of bone discrimination, but in a non-linear fashion. A 1 mm air mask expansion yielded AUC increases of 1 and 4% for UTE and PETRA images, respectively. UTE images had significantly greater discriminatory power in separating air from bone than PETRA images. Post-processing strategies improved the discriminatory power of air from bone for both UTE and PETRA images, and reduced the difference between the two imaging sequences. Both post-processed UTE and PETRA images demonstrated sufficient power to discriminate air from bone to support synthetic CT generation from MRI data.

摘要

准确分离空气和骨骼对于从磁共振成像(MRI)创建合成计算机断层扫描(CT)以支持放射肿瘤学工作流程至关重要。本研究比较了两种不同的超短回波时间序列在空气与骨骼分离方面的表现,并评估了用于校正图像强度不均匀性以及考虑组织边界处强度梯度以提高这种区分能力的后处理方法。根据机构审查委员会批准的前瞻性方案,对12名患者进行了CT和MRI扫描。测试的两种MRI序列分别是使用三维径向采集的超短回波时间成像(UTE)和使用径向采集的逐点编码时间缩减成像(PETRA)。采集后,对两个MR图像体积都应用了梯度非线性校正。通过供应商提供的归一化方法校正MRI强度不均匀性,然后使用N4itk算法进一步校正。为了克服空气 - 组织边界处的强度梯度,对MR图像中通过阈值定义的空气区域应用了从0到4毫米的空间扩张。通过比较预测的(由MR图像定义)与空气和骨骼的“真实”区域(由CT图像定义),在有无残余偏置场校正和局部空间扩张的情况下进行了受试者操作特征(ROC)分析。与未校正相比,后处理校正使UTE图像的ROC曲线下面积(AUC)从0.944±0.012增加到0.976±0.003,使PETRA图像的AUC从0.850±0.022增加到0.887±0.012。正如预期的那样,当扩大通过阈值定义的空气体积时,空气识别的敏感性随着骨骼区分特异性的增加而降低,但呈非线性方式。对于UTE和PETRA图像,1毫米的空气掩码扩张分别使AUC增加了1%和4%。UTE图像在分离空气和骨骼方面具有比PETRA图像显著更高的区分能力。后处理策略提高了UTE和PETRA图像在区分空气和骨骼方面的能力,并缩小了两个成像序列之间的差异。经过后处理的UTE和PETRA图像都显示出足够的能力来区分空气和骨骼,以支持从MRI数据生成合成CT。

相似文献

1
Quantitative characterizations of ultrashort echo (UTE) images for supporting air-bone separation in the head.
Phys Med Biol. 2015 Apr 7;60(7):2869-80. doi: 10.1088/0031-9155/60/7/2869. Epub 2015 Mar 17.
3
PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
J Nucl Med. 2014 Dec;55(12):2071-7. doi: 10.2967/jnumed.114.143958. Epub 2014 Nov 20.
5
Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy.
Phys Med Biol. 2013 Dec 7;58(23):8419-35. doi: 10.1088/0031-9155/58/23/8419. Epub 2013 Nov 11.
8
Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA).
Magn Reson Med. 2012 Feb;67(2):510-8. doi: 10.1002/mrm.23017. Epub 2011 Jun 30.
9
Magnetic Resonance-Based Automatic Air Segmentation for Generation of Synthetic Computed Tomography Scans in the Head Region.
Int J Radiat Oncol Biol Phys. 2015 Nov 1;93(3):497-506. doi: 10.1016/j.ijrobp.2015.07.001. Epub 2015 Jul 9.

引用本文的文献

1
Clinical validation of MR-generated synthetic CT by MRCAT for brain tumor radiotherapy.
J Appl Clin Med Phys. 2025 Jan;26(1):e14494. doi: 10.1002/acm2.14494. Epub 2024 Dec 13.
2
Linac- and CyberKnife-based MRI-only treatment planning of prostate SBRT using an optimized synthetic CT calibration curve.
J Appl Clin Med Phys. 2024 Sep;25(9):e14411. doi: 10.1002/acm2.14411. Epub 2024 Jun 4.
3
"sCT-Feasibility" - a feasibility study for deep learning-based MRI-only brain radiotherapy.
Radiat Oncol. 2024 Mar 8;19(1):33. doi: 10.1186/s13014-024-02428-3.
5
Deep Learning for Synthetic CT from Bone MRI in the Head and Neck.
AJNR Am J Neuroradiol. 2022 Aug;43(8):1172-1179. doi: 10.3174/ajnr.A7588.
6
A body mass index-based method for "MR-only" abdominal MR-guided adaptive radiotherapy.
Z Med Phys. 2024 Aug;34(3):456-467. doi: 10.1016/j.zemedi.2022.12.001. Epub 2023 Feb 8.
7
Pseudo CT Estimation from MRI Using Patch-based Random Forest.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10133. doi: 10.1117/12.2253936.
8
UTE-mDixon-based thorax synthetic CT generation.
Med Phys. 2019 Aug;46(8):3520-3531. doi: 10.1002/mp.13574. Epub 2019 Jun 12.
9
Conical ultrashort echo time (UTE) MRI in the evaluation of pediatric acute appendicitis.
Abdom Radiol (NY). 2019 Jan;44(1):22-30. doi: 10.1007/s00261-018-1705-y.

本文引用的文献

1
MRI-based treatment planning with pseudo CT generated through atlas registration.
Med Phys. 2014 May;41(5):051711. doi: 10.1118/1.4873315.
3
Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy.
Phys Med Biol. 2013 Dec 7;58(23):8419-35. doi: 10.1088/0031-9155/58/23/8419. Epub 2013 Nov 11.
4
Treatment planning of intracranial targets on MRI derived substitute CT data.
Radiother Oncol. 2013 Jul;108(1):118-22. doi: 10.1016/j.radonc.2013.04.028. Epub 2013 Jul 3.
9
An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy.
Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):e5-11. doi: 10.1016/j.ijrobp.2011.11.056. Epub 2012 Feb 11.
10
Correcting slice selectivity in hard pulse sequences.
J Magn Reson. 2012 Jan;214(1):61-7. doi: 10.1016/j.jmr.2011.10.005. Epub 2011 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验