Suppr超能文献

基于三金属铜锰镍氧化物的电化学赝电容器的简易水热合成法。

Facile hydrothermal synthesis of a tri-metallic Cu-Mn-Ni oxide-based electrochemical pseudo capacitor.

作者信息

Rao Komal Ali, Mazhar Muhammad Ehsan, Ahmad Javed

机构信息

Institute of Physics, Bahauddin Zakariya University, Multan-60800, Pakistan.

出版信息

Dalton Trans. 2024 Aug 6;53(31):13012-13021. doi: 10.1039/d4dt00142g.

Abstract

Transition metal oxide nanocomposites with heterostructures have gained a lot of attention for use in supercapacitors owing to their low cost, high surface area, fast transport of ions and electrons and high specific capacitance due to efficacious interplay between the electrode and the electrolytes. In this study, we fabricated tri-metallic Cu, Mn, Ni(CMNO), bi-metallic Mn, Ni(MNO) and mono-metallic Ni(NO) oxides through a facile hydrothermal route. All the fabricated materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDX), and their electrochemical properties were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). The CMNO material showed remarkable electrochemical performance with a specific capacitance of 790.63 F g at a current density of 1 A g, surpassing the performance of MNO (438.4 F g) and NO (290.82 F g). Furthermore, CMNO showed high cycling stability with a retention of 96.7% specific capacitance after 8000 cycles. Based on remarkable and unique properties, the CMNO material is regarded as a promising material for new-generation pseudo-capacitor applications.

摘要

具有异质结构的过渡金属氧化物纳米复合材料因其成本低、表面积大、离子和电子传输快以及电极与电解质之间的有效相互作用导致比电容高,在超级电容器中的应用备受关注。在本研究中,我们通过简便的水热法制备了三金属Cu、Mn、Ni(CMNO)、双金属Mn、Ni(MNO)和单金属Ni(NO)氧化物。使用扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和能量色散谱(EDX)对所有制备的材料进行了表征,并使用循环伏安法(CV)、电化学阻抗谱(EIS)和恒电流充放电(GCD)研究了它们的电化学性能。CMNO材料在1 A g的电流密度下表现出显著的电化学性能,比电容为790.63 F g,超过了MNO(438.4 F g)和NO(290.82 F g)的性能。此外,CMNO表现出高循环稳定性,在8000次循环后比电容保留率为96.7%。基于其卓越和独特的性能,CMNO材料被认为是新一代赝电容器应用的有前途的材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验