Indiana University, Richard M. Fairbanks School of Public Health, Department of Health Policy and Management, Indianapolis, Indiana.
Indiana University, School of Science, Indianapolis, Indiana.
West J Emerg Med. 2024 Jul;25(4):614-623. doi: 10.5811/westjem.18577.
Healthcare organizations are under increasing pressure from policymakers, payers, and advocates to screen for and address patients' health-related social needs (HRSN). The emergency department (ED) presents several challenges to HRSN screening, and patients are frequently not screened for HRSNs. Predictive modeling using machine learning and artificial intelligence, approaches may address some pragmatic HRSN screening challenges in the ED. Because predictive modeling represents a substantial change from current approaches, in this study we explored the acceptability of HRSN predictive modeling in the ED.
Emergency clinicians, ED staff, and patient perspectives on the acceptability and usage of predictive modeling for HRSNs in the ED were obtained through in-depth semi-structured interviews (eight per group, total 24). All participants practiced at or had received care from an urban, Midwest, safety-net hospital system. We analyzed interview transcripts using a modified thematic analysis approach with consensus coding.
Emergency clinicians, ED staff, and patients agreed that HRSN predictive modeling must lead to actionable responses and positive patient outcomes. Opinions about using predictive modeling results to initiate automatic referrals to HRSN services were mixed. Emergency clinicians and staff wanted transparency on data inputs and usage, demanded high performance, and expressed concern for unforeseen consequences. While accepting, patients were concerned that prediction models can miss individuals who required services and might perpetuate biases.
Emergency clinicians, ED staff, and patients expressed mostly positive views about using predictive modeling for HRSNs. Yet, clinicians, staff, and patients listed several contingent factors impacting the acceptance and implementation of HRSN prediction models in the ED.
医疗保健组织面临着政策制定者、支付者和倡导者越来越大的压力,要求他们对患者的健康相关社会需求(HRSN)进行筛查和处理。急诊科(ED)在 HRSN 筛查方面存在若干挑战,患者经常未接受 HRSN 筛查。使用机器学习和人工智能的预测建模方法可能会解决 ED 中一些实际的 HRSN 筛查挑战。由于预测建模代表了对当前方法的重大改变,因此在这项研究中,我们探讨了 ED 中 HRSN 预测建模的可接受性。
通过深入的半结构化访谈(每组 8 人,共 24 人),获得了急诊临床医生、ED 工作人员和患者对 ED 中 HRSN 预测建模的可接受性和使用的看法。所有参与者均在城市、中西部、保障型医疗体系的医院工作或接受过医疗服务。我们使用带有共识编码的改良主题分析方法对访谈记录进行了分析。
急诊临床医生、ED 工作人员和患者均认为 HRSN 预测建模必须能够得出可采取行动的响应并产生积极的患者结果。对于使用预测建模结果来启动对 HRSN 服务的自动转介,意见不一。急诊临床医生和工作人员希望了解数据输入和使用的透明度,要求有高性能,并对不可预见的后果表示担忧。尽管接受,但患者担心预测模型可能会漏掉需要服务的个体,并且可能会延续偏见。
急诊临床医生、ED 工作人员和患者对使用预测建模进行 HRSN 表示出了大多是积极的看法。然而,临床医生、工作人员和患者列出了一些影响 ED 中 HRSN 预测模型接受和实施的相关因素。