Suppr超能文献

提高联邦学习的全局泛化能力和局部个性化能力。

Improving Global Generalization and Local Personalization for Federated Learning.

作者信息

Meng Lei, Qi Zhuang, Wu Lei, Du Xiaoyu, Li Zhaochuan, Cui Lizhen, Meng Xiangxu

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):76-87. doi: 10.1109/TNNLS.2024.3417452. Epub 2025 Jan 7.

Abstract

Federated learning aims to facilitate collaborative training among multiple clients with data heterogeneity in a privacy-preserving manner, which either generates the generalized model or develops personalized models. However, existing methods typically struggle to balance both directions, as optimizing one often leads to failure in another. To address the problem, this article presents a method named personalized federated learning via cross silo prototypical calibration (pFedCSPC) to enhance the consistency of knowledge of clients by calibrating features from heterogeneous spaces, which contributes to enhancing the collaboration effectiveness between clients. Specifically, pFedCSPC employs an adaptive aggregation method to offer personalized initial models to each client, enabling rapid adaptation to personalized tasks. Subsequently, pFedCSPC learns class representation patterns on clients by clustering, averages the representations within each cluster to form local prototypes, and aggregates them on the server to generate global prototypes. Meanwhile, pFedCSPC leverages global prototypes as knowledge to guide the learning of local representation, which is beneficial for mitigating the data imbalanced problem and preventing overfitting. Moreover, pFedCSPC has designed a cross-silo prototypical calibration (CSPC) module, which utilizes contrastive learning techniques to map heterogeneous features from different sources into a unified space. This can enhance the generalization ability of the global model. Experiments were conducted on four datasets in terms of performance comparison, ablation study, in-depth analysis, and case study, and the results verified that pFedCSPC achieves improvements in both global generalization and local personalization performance via calibrating cross-source features and strengthening collaboration effectiveness, respectively.

摘要

联邦学习旨在以隐私保护的方式促进多个具有数据异质性的客户端之间的协作训练,从而生成通用模型或开发个性化模型。然而,现有方法通常难以在两个方向上取得平衡,因为优化一个方向往往会导致另一个方向的失败。为了解决这个问题,本文提出了一种名为通过跨筒仓原型校准的个性化联邦学习(pFedCSPC)的方法,通过校准来自异构空间的特征来增强客户端知识的一致性,这有助于提高客户端之间的协作效率。具体来说,pFedCSPC采用自适应聚合方法为每个客户端提供个性化的初始模型,使其能够快速适应个性化任务。随后,pFedCSPC通过聚类在客户端上学习类表示模式,对每个聚类中的表示进行平均以形成局部原型,并在服务器上对它们进行聚合以生成全局原型。同时,pFedCSPC利用全局原型作为知识来指导局部表示的学习,这有利于缓解数据不平衡问题并防止过拟合。此外,pFedCSPC设计了一个跨筒仓原型校准(CSPC)模块,该模块利用对比学习技术将来自不同源的异构特征映射到统一空间。这可以提高全局模型的泛化能力。在四个数据集上进行了性能比较、消融研究、深入分析和案例研究等实验,结果验证了pFedCSPC分别通过校准跨源特征和增强协作效率,在全局泛化和局部个性化性能方面都取得了改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验