Suppr超能文献

具有非对称输入约束的非线性系统的鲁棒事件驱动跟踪控制的自适应动态规划

Adaptive Dynamic Programming for Robust Event-Driven Tracking Control of Nonlinear Systems With Asymmetric Input Constraints.

作者信息

Yang Xiong, Wei Qinglai

出版信息

IEEE Trans Cybern. 2024 Nov;54(11):6333-6344. doi: 10.1109/TCYB.2024.3418904. Epub 2024 Oct 30.

Abstract

This article considers the robust dynamic event-driven tracking control problem of nonlinear systems having mismatched disturbances and asymmetric input constraints. Initially, to tackle the asymmetric constraints, a novel nonquadratic value function is constructed for the original system. This makes the asymmetrically constrained tracking control problem transformed into an unconstrained optimal regulation problem. Then, a dynamic event-driven mechanism is proposed. Meanwhile, the event-driven Hamilton-Jacobi-Bellman equation (ED-HJBE) is developed for the optimal regulation problem in order to acquire the optimal control with distinctly decreased computational burden. To solve the ED-HJBE, a single critic neural network (CNN) is designed in the adaptive dynamic programming framework. Meanwhile, the gradient descent method is employed to update the CNN's weights. After that, both the weight estimation error and the tracking error are proved to be uniformly ultimately bounded via Lyapunov's direct method. Finally, simulations of the spring-mass-damper system and the pendulum plant are separately utilized to validate the established theoretical claims.

摘要

本文研究了具有不匹配干扰和不对称输入约束的非线性系统的鲁棒动态事件驱动跟踪控制问题。首先,为解决不对称约束问题,为原系统构造了一种新颖的非二次价值函数。这使得不对称约束跟踪控制问题转化为无约束最优调节问题。然后,提出了一种动态事件驱动机制。同时,针对最优调节问题推导了事件驱动的哈密顿-雅可比-贝尔曼方程(ED-HJBE),以便获得计算负担显著降低的最优控制。为求解ED-HJBE,在自适应动态规划框架下设计了单批评神经网络(CNN)。同时,采用梯度下降法更新CNN的权重。之后,通过李雅普诺夫直接法证明权重估计误差和跟踪误差均一致最终有界。最后,分别利用弹簧-质量-阻尼器系统和摆系统的仿真来验证所建立的理论结论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验