Suppr超能文献

基于粒子群优化的自适应动态规划的非匹配互联系统分散事件触发跟踪控制

Decentralized Event-Triggered Tracking Control for Unmatched Interconnected Systems via Particle Swarm Optimization-Based Adaptive Dynamic Programming.

作者信息

Liu Chong, Chu Zhousheng, Duan Zhongxing, Zhang Huaguang, Ma Zongfang

出版信息

IEEE Trans Cybern. 2024 Nov;54(11):6895-6908. doi: 10.1109/TCYB.2024.3462718. Epub 2024 Oct 30.

Abstract

The problem of the large-scale interconnected system (LSIS) control is prevalent in practical engineering and is becoming increasingly complex. In this article, we propose a novel decentralized event-triggered tracking control (ETTC) strategy for a class of continuous-time nonlinear LSIS with unmatched interconnected terms and asymmetric input constraints. First, auxiliary subsystems are established to address the unmatched cross-linking terms. Next, the dynamics states of the tracking error and the exosystem are combined to construct a nominal augmented subsystem. By employing a nonquadratic performance function, the input-constrained decentralized tracking control problem is transformed into an optimal control problem for the nominal augmented subsystem. A group of independent parameters and event-triggered conditions are designed to save communication bandwidth and computational resources. Subsequently, the critic-only adaptive dynamic programming (ADP) method is used to solve the Hamilton-Jacobi-Bellman equation (HJBE) associated with the optimal control problem. To improve training success rate, the weights of the critic neural network (NN) are updated by introducing a particle swarm optimization algorithm (PSOA). The tracking error and the NN weights are proved to be uniformly ultimately bounded (UUB) under the proposed ETTC by using the Lyapunov extension theorem. Finally, the simulation example of an unmatched interconnected system is provided to verify the validity of the proposed decentralized method.

摘要

大规模互联系统(LSIS)的控制问题在实际工程中普遍存在且日益复杂。在本文中,我们针对一类具有不匹配互联项和非对称输入约束的连续时间非线性LSIS提出了一种新颖的分散事件触发跟踪控制(ETTC)策略。首先,建立辅助子系统来处理不匹配的交联项。其次,将跟踪误差和外系统的动态状态相结合,构建一个标称增广子系统。通过采用非二次性能函数,将输入受限的分散跟踪控制问题转化为标称增广子系统的最优控制问题。设计了一组独立参数和事件触发条件以节省通信带宽和计算资源。随后,使用仅评判器自适应动态规划(ADP)方法来求解与最优控制问题相关的哈密顿 - 雅可比 - 贝尔曼方程(HJBE)。为提高训练成功率,通过引入粒子群优化算法(PSOA)来更新评判器神经网络(NN)的权重。利用李雅普诺夫扩展定理证明了在所提出的ETTC下跟踪误差和NN权重是一致最终有界(UUB)的。最后,给出了一个不匹配互联系统的仿真示例,以验证所提出的分散方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验