Suppr超能文献

一种用于脑卒中患者手部功能康复的自适应混合脑机接口。

An Adaptive Hybrid Brain-Computer Interface for Hand Function Rehabilitation of Stroke Patients.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2950-2960. doi: 10.1109/TNSRE.2024.3431025. Epub 2024 Aug 20.

Abstract

Motor imagery (MI) based brain computer interface (BCI) has been extensively studied to improve motor recovery for stroke patients by inducing neuroplasticity. However, due to the lower spatial resolution and signal-to-noise ratio (SNR) of electroencephalograph (EEG), MI based BCI system that involves decoding hand movements within the same limb remains lower classification accuracy and poorer practicality. To overcome the limitations, an adaptive hybrid BCI system combining MI and steady-state visually evoked potential (SSVEP) is developed to improve decoding accuracy while enhancing neural engagement. On the one hand, the SSVEP evoked by visual stimuli based on action-state flickering coding approach significantly improves the recognition accuracy compared to the pure MI based BCI. On the other hand, to reduce the impact of SSVEP on MI due to the dual-task interference effect, the event-related desynchronization (ERD) based neural engagement is monitored and employed for feedback in real-time to ensure the effective execution of MI tasks. Eight healthy subjects and six post-stroke patients were recruited to verify the effectiveness of the system. The results showed that the four-class gesture recognition accuracies of healthy individuals and patients could be improved to 94.37 ± 4.77 % and 79.38 ± 6.26 %, respectively. Moreover, the designed hybrid BCI could maintain the same degree of neural engagement as observed when subjects solely performed MI tasks. These phenomena demonstrated the interactivity and clinical utility of the developed system for the rehabilitation of hand function in stroke patients.

摘要

基于运动想象(MI)的脑机接口(BCI)已被广泛研究,通过诱导神经可塑性来改善中风患者的运动康复。然而,由于脑电图(EEG)的空间分辨率和信噪比(SNR)较低,涉及解码同一肢体手运动的基于 MI 的 BCI 系统的分类准确性仍然较低,实用性较差。为了克服这些限制,开发了一种结合 MI 和稳态视觉诱发电位(SSVEP)的自适应混合 BCI 系统,以提高解码准确性,同时增强神经参与度。一方面,基于动作状态闪烁编码方法的视觉刺激诱发的 SSVEP 显著提高了识别准确性,与纯基于 MI 的 BCI 相比。另一方面,为了减少由于双重任务干扰效应导致的 SSVEP 对 MI 的影响,基于事件相关去同步(ERD)的神经参与度被实时监测并用于反馈,以确保 MI 任务的有效执行。招募了 8 名健康受试者和 6 名中风患者来验证该系统的有效性。结果表明,健康个体和患者的四类手势识别准确率分别提高到 94.37±4.77%和 79.38±6.26%。此外,所设计的混合 BCI 可以保持与观察到的受试者仅执行 MI 任务时相同的神经参与度。这些现象表明,所开发的系统对于中风患者手部功能康复具有交互性和临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验