Given B D, Cohen R M, Shoelson S E, Frank B H, Rubenstein A H, Tager H S
J Clin Invest. 1985 Oct;76(4):1398-405. doi: 10.1172/JCI112116.
Since a complete map of insulin-related peptides in humans requires consideration of proinsulin, Arg32/Glu33-split proinsulin, Arg65/Gly66-split proinsulin, des-Arg31,Arg32-proinsulin, des-Lys64, Arg65-proinsulin, and insulin, we applied high performance liquid chromatography coupled with radioimmunoassay to investigate the formation of proinsulin conversion intermediates in vitro and in vivo. Kinetic analysis of proinsulin processing by a mixture of trypsin and carboxypeptidase B (to stimulate in vivo processes) revealed (a) a rapid decline in proinsulin concommitant with formation of conversion intermediates, (b) formation of des-Arg31, Arg32-proinsulin and des-Lys64,Arg65-proinsulin in the ratio 3.3:1 at steady state, and (c) complete conversion of the precursor to insulin during extended incubation. Studies on normal human pancreas identified a similar ratio of des-Arg31,Arg32-proinsulin to des-Lys64,Arg65-proinsulin (approximately 3:1), whereas two insulinomas contained sizable amounts of des-Arg31,Arg32-proinsulin, but barely detectable amounts of des-Lys64,Arg65-proinsulin. None of the tissues contained measurable quantities of Arg32/Glu33- or Arg65/Gly66-split proinsulin. Analysis of plasma from three diabetic subjects managed by the intravenous infusion of human proinsulin revealed less than 1% processing of the circulating precursor to conversion intermediates and no processing of the precursor to human insulin. Nevertheless, analysis of plasma from the same subjects managed by the subcutaneous infusion of proinsulin revealed 4-11% processing of the precursor to intermediates that had the properties of des-Arg31,Arg32-proinsulin and Arg65/Gly66-split proinsulin. We conclude that (a) processing of proinsulin to insulin in vivo as in vitro likely occurs by preferential cleavage at the Arg32-Glu33 peptide bond in proinsulin, (b) proinsulin is inefficiently processed in the vascular compartment, and (c) subcutaneous administration of the precursor can result in the formation of conversion intermediates with the potential for contributing to biological activity.
由于完整绘制人类胰岛素相关肽图谱需要考虑胰岛素原、Arg32/Glu33裂解胰岛素原、Arg65/Gly66裂解胰岛素原、去-Arg31,Arg32-胰岛素原、去-Lys64,Arg65-胰岛素原和胰岛素,我们应用高效液相色谱结合放射免疫分析法来研究胰岛素原转化中间体在体外和体内的形成。用胰蛋白酶和羧肽酶B混合物(以模拟体内过程)对胰岛素原加工进行动力学分析显示:(a)胰岛素原迅速减少,同时形成转化中间体;(b)在稳态下,去-Arg31,Arg32-胰岛素原和去-Lys64,Arg65-胰岛素原的形成比例为3.3:1;(c)长时间孵育期间,前体完全转化为胰岛素。对正常人胰腺的研究发现,去-Arg31,Arg32-胰岛素原与去-Lys64,Arg65-胰岛素原的比例相似(约为3:1),而两个胰岛素瘤含有大量的去-Arg31,Arg32-胰岛素原,但几乎检测不到去-Lys64,Arg65-胰岛素原。所有组织中均未检测到可测量的Arg32/Glu33-或Arg65/Gly66-裂解胰岛素原。对三名通过静脉输注人胰岛素原治疗的糖尿病患者的血浆分析显示,循环前体转化为转化中间体的加工率不到1%,且前体未加工成人胰岛素。然而,对同一患者通过皮下输注胰岛素原治疗的血浆分析显示,前体加工成具有去-Arg31,Arg32-胰岛素原和Arg65/Gly66-裂解胰岛素原特性的中间体的加工率为4%-11%。我们得出结论:(a)体内胰岛素原向胰岛素的加工过程与体外相似,可能是通过优先切割胰岛素原中的Arg32-Glu33肽键进行的;(b)胰岛素原在血管腔室中的加工效率低下;(c)皮下注射前体可导致形成具有生物活性潜力的转化中间体。