Dey Sourik, Sankaran Shrikrishnan
INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
Trends Biotechnol. 2024 Dec;42(12):1663-1676. doi: 10.1016/j.tibtech.2024.06.011. Epub 2024 Jul 18.
Recent advances in engineered bacterial therapeutics underscore their potential in treating diseases via targeted, live interventions. Despite their promising performance in early clinical phases, no engineered therapeutic bacteria have yet received approval, primarily due to challenges in proving efficacy while ensuring biosafety. Material science innovations, particularly the encapsulation of bacteria within hydrogels, present a promising avenue to enhance bacterial survival, efficacy, and safety in therapeutic applications. This review discusses this interdisciplinary approach to develop living therapeutic materials. Hydrogels not only safeguard the bacteria from harsh physiological conditions but also enable controlled therapeutic release and prevent unintended bacterial dissemination. The strategic use of encapsulation materials could redefine the delivery and functionality of engineered bacterial therapeutics, facilitating their clinical translation.
工程细菌疗法的最新进展凸显了其通过靶向性活体干预治疗疾病的潜力。尽管它们在早期临床阶段表现出了良好的效果,但尚未有工程治疗细菌获得批准,主要原因在于在确保生物安全性的同时证明疗效存在挑战。材料科学的创新,特别是将细菌封装在水凝胶中,为提高细菌在治疗应用中的存活率、疗效和安全性提供了一条有前景的途径。本文综述讨论了这种开发活体治疗材料的跨学科方法。水凝胶不仅能保护细菌免受恶劣生理条件的影响,还能实现可控的治疗释放并防止细菌意外扩散。封装材料的战略性使用可以重新定义工程细菌疗法的递送方式和功能,促进其临床转化。