Suppr超能文献

基于浓度、成分和气象因素综合敏感性评估的PM1对能见度影响的机器学习分析

Machine learning analysis of PM1 impact on visibility with comprehensive sensitivity evaluation of concentration, composition, and meteorological factors.

作者信息

Majewski Grzegorz, Szeląg Bartosz, Rogula-Kozłowska Wioletta, Rogula-Kopiec Patrycja, Brandyk Andrzej, Rybak Justyna, Radziemska Maja, Liniauskiene Ernesta, Klik Barbara

机构信息

Institute of Environmental Engineering, Warsaw University of Life Sciences, 02-776, Warsaw, Poland.

Faculty of Fire Safety Engineering, Fire University, 01-629, Warsaw, Poland.

出版信息

Sci Rep. 2024 Jul 20;14(1):16732. doi: 10.1038/s41598-024-67576-8.

Abstract

This study introduces a novel approach to visibility modelling, focusing on PM1 concentration, its chemical composition, and meteorological conditions in two distinct Polish cities, Zabrze and Warsaw. The analysis incorporates PM1 concentration measurements as well as its chemical composition and meteorological parameters, including visibility data collected during summer and winter measurement campaigns (120 samples in each city). The developed calculation procedure encompasses several key steps: formulating a visibility prediction model through machine learning, identifying data in clusters using unsupervised learning methods, and conducting global sensitivity analysis for each cluster. The multi-layer perceptron methods developed demonstrate high accuracy in predicting visibility, with R values of 0.90 for Warsaw and an RMSE of 1.52 km for Zabrze. Key findings reveal that air temperature and relative humidity significantly impact visibility, alongside PM1 concentration and specific heavy metals such as Rb, Vi, and Cd in Warsaw and Cr, Vi, and Mo in Zabrze. Cluster analysis underscores the localized and complex nature of visibility determinants, highlighting the substantial but previously underappreciated role of heavy metals. Integrating the k-means clustering and GSA methods emerges as a powerful tool for unravelling complex mechanisms of chemical compound changes in particulate matter and air, significantly influencing visibility development.

摘要

本研究引入了一种能见度建模的新方法,重点关注波兰两个不同城市扎布热和华沙的PM1浓度、其化学成分以及气象条件。该分析纳入了PM1浓度测量数据及其化学成分和气象参数,包括在夏季和冬季测量活动期间收集的能见度数据(每个城市120个样本)。所开发的计算程序包括几个关键步骤:通过机器学习制定能见度预测模型,使用无监督学习方法识别聚类中的数据,并对每个聚类进行全局敏感性分析。所开发的多层感知器方法在预测能见度方面显示出高精度,华沙的R值为0.90,扎布热的均方根误差为1.52千米。主要研究结果表明,气温和相对湿度对能见度有显著影响,同时扎布热的PM1浓度以及特定重金属如铷、钒和镉,华沙的铬、钒和钼也有显著影响。聚类分析强调了能见度决定因素的局部性和复杂性,突出了重金属虽重要但此前未得到充分重视的作用。将k均值聚类和全局敏感性分析方法相结合,成为揭示颗粒物和空气中化合物变化复杂机制的有力工具,对能见度发展有重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9807/11271544/7da97117a804/41598_2024_67576_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验