SimBioSys Inc., Champaign, IL, USA.
NPJ Syst Biol Appl. 2024 Jul 19;10(1):78. doi: 10.1038/s41540-024-00404-x.
Biological signal transduction networks are central to information processing and regulation of gene expression across all domains of life. Dysregulation is known to cause a wide array of diseases, including cancers. Here I introduce self-consistent signal transduction analysis, which utilizes genome-scale -omics data (specifically transcriptomics and/or proteomics) in order to predict the flow of information through these networks in an individualized manner. I apply the method to the study of endocrine therapy in breast cancer patients, and show that drugs that inhibit estrogen receptor α elicit a wide array of antitumoral effects, and that their most clinically-impactful ones are through the modulation of proliferative signals that control the genes GREB1, HK1, AKT1, MAPK1, AKT2, and NQO1. This method offers researchers a valuable tool in understanding how and why dysregulation occurs, and how perturbations to the network (such as targeted therapies) effect the network itself, and ultimately patient outcomes.
生物信号转导网络是所有生命领域中信息处理和基因表达调控的核心。失调已知会导致多种疾病,包括癌症。在这里,我介绍了自洽信号转导分析,它利用基因组规模的组学数据(特别是转录组学和/或蛋白质组学),以便以个体化的方式预测这些网络中的信息流。我将该方法应用于乳腺癌患者内分泌治疗的研究,结果表明,抑制雌激素受体 α 的药物会引起广泛的抗肿瘤作用,而最具临床意义的作用是通过调节控制基因 GREB1、HK1、AKT1、MAPK1、AKT2 和 NQO1 的增殖信号。该方法为研究人员提供了一种有价值的工具,可用于了解失调发生的方式和原因,以及网络的干扰(如靶向治疗)如何影响网络本身,并最终影响患者的结局。