Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Avcılar, 34320, Istanbul, Turkey.
Department of Industrial Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcılar, 34320, Istanbul, Turkey.
Anal Bioanal Chem. 2024 Sep;416(23):5071-5088. doi: 10.1007/s00216-024-05444-0. Epub 2024 Jul 20.
This study developed an innovative biosensor strategy for the sensitive and selective detection of canine mammary tumor biomarkers, cancer antigen 15-3 (CA 15-3) and mucin 1 (MUC-1), integrating green silver nanoparticles (GAgNPs) with machine learning (ML) algorithms to achieve high diagnostic accuracy and potential for noninvasive early detection. The GAgNPs-enhanced electrochemical biosensor demonstrated selective detection of CA 15-3 in serum and MUC-1 in tissue homogenates, with limits of detection (LODs) of 0.07 and 0.11 U mL, respectively. The nanoscale dimensions of the GAgNPs endowed them with electrochemically active surface areas, facilitating sensitive biomarker detection. Experimental studies targeted CA 15-3 and MUC-1 biomarkers in clinical samples, and the biosensor exhibited ease of use and good selectivity. Furthermore, ML algorithms were employed to analyze the electrochemical data and predict biomarker concentrations, enhancing the diagnostic accuracy. The Random Forest algorithm achieved 98% accuracy in tumor presence prediction, while an Artificial Neural Network attained 76% accuracy in CA 15-3-based tumor grade classification. The integration of ML techniques with the GAgNPs-based biosensor offers a promising approach for noninvasive, accurate, and early detection of canine mammary tumors, potentially revolutionizing veterinary diagnostics. This multilayered strategy, combining eco-friendly nanomaterials, electrochemical sensing, and ML algorithms, holds significant potential for advancing both biomedical research and clinical practice in the field of canine mammary tumor diagnostics.
本研究开发了一种创新的生物传感器策略,用于灵敏和选择性地检测犬乳腺肿瘤生物标志物,包括癌抗原 15-3(CA 15-3)和粘蛋白 1(MUC-1),将绿色银纳米粒子(GAgNPs)与机器学习(ML)算法集成,以实现高诊断准确性和潜在的非侵入性早期检测。GAgNPs 增强的电化学生物传感器在血清中对 CA 15-3 和组织匀浆中对 MUC-1 具有选择性检测能力,检测限(LOD)分别为 0.07 和 0.11 U mL。GAgNPs 的纳米尺寸赋予了它们电化学活性表面积,有利于敏感生物标志物的检测。实验研究针对临床样本中的 CA 15-3 和 MUC-1 生物标志物,生物传感器具有易用性和良好的选择性。此外,ML 算法被用于分析电化学数据并预测生物标志物浓度,从而提高诊断准确性。随机森林算法在肿瘤存在预测方面达到了 98%的准确率,而人工神经网络在基于 CA 15-3 的肿瘤分级分类方面达到了 76%的准确率。将 ML 技术与基于 GAgNPs 的生物传感器相结合,为犬乳腺肿瘤的非侵入性、准确和早期检测提供了一种有前途的方法,可能会彻底改变兽医诊断学。这种多层策略,结合了环保型纳米材料、电化学生物传感和 ML 算法,在犬乳腺肿瘤诊断的生物医学研究和临床实践中具有重要的应用潜力。