Suppr超能文献

使用临床机器学习模型在 105 名脑卒中后患者中识别与跌倒相关的最佳平衡因素和机器人辅助步态训练属性。

Identifying best fall-related balance factors and robotic-assisted gait training attributes in 105 post-stroke patients using clinical machine learning models.

机构信息

Department of Physical Therapy, Sports Movement Artificial Robotics Technology (SMART) Institute, Yonsei University, Wonju, Korea.

Department of Physical Therapy, Yonsei University, Wonju, Korea.

出版信息

NeuroRehabilitation. 2024;55(1):1-10. doi: 10.3233/NRE-240116.

Abstract

BACKGROUND

Despite the promising effects of robot-assisted gait training (RAGT) on balance and gait in post-stroke rehabilitation, the optimal predictors of fall-related balance and effective RAGT attributes remain unclear in post-stroke patients at a high risk of fall.

OBJECTIVE

We aimed to determine the most accurate clinical machine learning (ML) algorithm for predicting fall-related balance factors and identifying RAGT attributes.

METHODS

We applied five ML algorithms- logistic regression, random forest, decision tree, support vector machine (SVM), and extreme gradient boosting (XGboost)- to a dataset of 105 post-stroke patients undergoing RAGT. The variables included the Berg Balance Scale score, walking speed, steps, hip and knee active torques, functional ambulation categories, Fugl- Meyer assessment (FMA), the Korean version of the Modified Barthel Index, and fall history.

RESULTS

The random forest algorithm excelled (receiver operating characteristic area under the curve; AUC = 0.91) in predicting balance improvement, outperforming the SVM (AUC = 0.76) and XGboost (AUC = 0.71). Key determinants identified were knee active torque, age, step count, number of RAGT sessions, FMA, and hip torque.

CONCLUSION

The random forest algorithm was the best prediction model for identifying fall-related balance and RAGT determinants, highlighting the importance of key factors for successful RAGT outcome performance in fall-related balance improvement.

摘要

背景

尽管机器人辅助步态训练(RAGT)在脑卒中康复中对平衡和步态有积极影响,但在高跌倒风险的脑卒中患者中,与跌倒相关的平衡的最佳预测因素和有效的 RAGT 特征仍不清楚。

目的

我们旨在确定最准确的临床机器学习(ML)算法,以预测与跌倒相关的平衡因素和识别 RAGT 特征。

方法

我们将五种 ML 算法-逻辑回归、随机森林、决策树、支持向量机(SVM)和极端梯度提升(XGboost)-应用于 105 名接受 RAGT 的脑卒中患者的数据集。变量包括 Berg 平衡量表评分、行走速度、步数、髋关节和膝关节主动扭矩、功能性步行类别、Fugl-Meyer 评估(FMA)、韩国版改良巴氏指数和跌倒史。

结果

随机森林算法表现出色(接收器操作特征曲线下面积;AUC=0.91),在预测平衡改善方面优于 SVM(AUC=0.76)和 XGboost(AUC=0.71)。确定的关键决定因素是膝关节主动扭矩、年龄、步数、RAGT 疗程数、FMA 和髋关节扭矩。

结论

随机森林算法是识别与跌倒相关的平衡和 RAGT 决定因素的最佳预测模型,强调了在成功的 RAGT 结果中,关键因素对与跌倒相关的平衡改善的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验