Department of Physical Therapy, Sports Movement Artificial Robotics Technology (SMART) Institute, Yonsei University, Wonju, Korea.
Department of Physical Therapy, Yonsei University, Wonju, Korea.
NeuroRehabilitation. 2024;55(1):1-10. doi: 10.3233/NRE-240116.
Despite the promising effects of robot-assisted gait training (RAGT) on balance and gait in post-stroke rehabilitation, the optimal predictors of fall-related balance and effective RAGT attributes remain unclear in post-stroke patients at a high risk of fall.
We aimed to determine the most accurate clinical machine learning (ML) algorithm for predicting fall-related balance factors and identifying RAGT attributes.
We applied five ML algorithms- logistic regression, random forest, decision tree, support vector machine (SVM), and extreme gradient boosting (XGboost)- to a dataset of 105 post-stroke patients undergoing RAGT. The variables included the Berg Balance Scale score, walking speed, steps, hip and knee active torques, functional ambulation categories, Fugl- Meyer assessment (FMA), the Korean version of the Modified Barthel Index, and fall history.
The random forest algorithm excelled (receiver operating characteristic area under the curve; AUC = 0.91) in predicting balance improvement, outperforming the SVM (AUC = 0.76) and XGboost (AUC = 0.71). Key determinants identified were knee active torque, age, step count, number of RAGT sessions, FMA, and hip torque.
The random forest algorithm was the best prediction model for identifying fall-related balance and RAGT determinants, highlighting the importance of key factors for successful RAGT outcome performance in fall-related balance improvement.
尽管机器人辅助步态训练(RAGT)在脑卒中康复中对平衡和步态有积极影响,但在高跌倒风险的脑卒中患者中,与跌倒相关的平衡的最佳预测因素和有效的 RAGT 特征仍不清楚。
我们旨在确定最准确的临床机器学习(ML)算法,以预测与跌倒相关的平衡因素和识别 RAGT 特征。
我们将五种 ML 算法-逻辑回归、随机森林、决策树、支持向量机(SVM)和极端梯度提升(XGboost)-应用于 105 名接受 RAGT 的脑卒中患者的数据集。变量包括 Berg 平衡量表评分、行走速度、步数、髋关节和膝关节主动扭矩、功能性步行类别、Fugl-Meyer 评估(FMA)、韩国版改良巴氏指数和跌倒史。
随机森林算法表现出色(接收器操作特征曲线下面积;AUC=0.91),在预测平衡改善方面优于 SVM(AUC=0.76)和 XGboost(AUC=0.71)。确定的关键决定因素是膝关节主动扭矩、年龄、步数、RAGT 疗程数、FMA 和髋关节扭矩。
随机森林算法是识别与跌倒相关的平衡和 RAGT 决定因素的最佳预测模型,强调了在成功的 RAGT 结果中,关键因素对与跌倒相关的平衡改善的重要性。