Alam Mohammad Shahidul, Penedo Marcos, Sumikama Takashi, Miyazawa Keisuke, Hirahara Kaori, Fukuma Takeshi
Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
École Polytechnique Fédérale de Lausanne, Institute for Bioengineering, Laboratory for Bio and Nanoinstrumentation, Lausanne, CH 1015, Switzerland.
Small Methods. 2024 Dec;8(12):e2400287. doi: 10.1002/smtd.202400287. Epub 2024 Jun 21.
The invention of 3D atomic force microscopy (3D-AFM) has enabled visualizing subnanoscale 3D hydration structures. Meanwhile, its applications to imaging flexible molecular chains have started to be experimentally explored. However, the validity and principle of such imaging have yet to be clarified by comparing experiments and simulations or cross-observations with an alternative technique. Such studies are impeded by the lack of an appropriate model. Here, this difficulty is overcome by fabricating 3D carbon nanotube (CNT) structures flexible enough for 3D-AFM, large enough for scanning electron microscopy (SEM), and simple enough for simulations. SEM and 3D-AFM observations of the same model provide unambiguous evidence to support the possibility of imaging overlapped nanostructures, such as suspended CNT and underlying platinum (Pt) nanodots. Langevin dynamics simulations of such 3D-AFM imaging clarify the imaging mechanism, where the flexible CNT is laterally displaced to allow the AFM probe access to the underlying structures. These results consistently show that 3D-AFM images are affected by the friction between the CNT and AFM nanoprobe, yet it can be significantly suppressed by oscillating the cantilever. This study reinforces the theoretical basis of 3D-AFM for imaging various 3D self-organizing systems in diverse fields, from life sciences to interface sciences.
三维原子力显微镜(3D-AFM)的发明使亚纳米级三维水化结构的可视化成为可能。与此同时,其在柔性分子链成像方面的应用也已开始进行实验探索。然而,通过将实验与模拟进行比较,或与另一种技术进行交叉观测,此类成像的有效性和原理仍有待阐明。由于缺乏合适的模型,此类研究受到了阻碍。在此,通过制造出足够柔性以用于3D-AFM、足够大以用于扫描电子显微镜(SEM)且足够简单以用于模拟的三维碳纳米管(CNT)结构,克服了这一困难。对同一模型的SEM和3D-AFM观测提供了明确的证据,支持对重叠纳米结构(如悬浮的CNT和下层的铂(Pt)纳米点)进行成像的可能性。此类3D-AFM成像的朗之万动力学模拟阐明了成像机制,即柔性CNT会横向位移,以使AFM探针能够接触到下层结构。这些结果一致表明,3D-AFM图像会受到CNT与AFM纳米探针之间摩擦力的影响,但通过振荡悬臂可以显著抑制这种影响。这项研究强化了3D-AFM在成像从生命科学到界面科学等不同领域中各种三维自组织系统方面的理论基础。