Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
Centro Nacional de Investigaciones Cardiovasculares. (ISCIII), Madrid, Spain.
J Neurochem. 2024 Sep;168(9):2056-2072. doi: 10.1111/jnc.16181. Epub 2024 Jul 20.
The neuronal glycine transporter GlyT2 removes glycine from the synaptic cleft through active Na, Cl, and glycine cotransport contributing to the termination of the glycinergic signal as well as supplying substrate to the presynaptic terminal for the maintenance of the neurotransmitter content in synaptic vesicles. Patients with mutations in the human GlyT2 gene (SLC6A5), develop hyperekplexia or startle disease (OMIM 149400), characterized by hypertonia and exaggerated startle responses to trivial stimuli that may have lethal consequences in the neonates as a result of apnea episodes. Post-translational modifications in cysteine residues of GlyT2 are an aspect of structural interest we analyzed. Our study is compatible with a reversible and short-lived S-acylation in spinal cord membranes, detectable by biochemical and proteomics methods (acyl-Rac binding and IP-ABE) confirmed with positive and negative controls (palmitoylated and non-palmitoylated proteins). According to a short-lived modification, direct labeling using click chemistry was faint but mostly consistent. We have analyzed the physiological properties of a GlyT2 mutant lacking the cysteines with high prediction of palmitoylation and the mutant is less prone to be included in lipid rafts, an effect also observed upon treatment with the palmitoylation inhibitor 2-bromopalmitate. This work demonstrates there are determinants of lipid raft inclusion associated with the GlyT2 mutated cysteines, which are presumably modified by palmitoylation.
神经元甘氨酸转运蛋白 GlyT2 通过主动 Na+、Cl-和甘氨酸共转运将甘氨酸从突触间隙中清除,有助于终止甘氨酸能信号,以及为突触前末梢提供基质,以维持突触小泡中的神经递质含量。人类 GlyT2 基因 (SLC6A5) 突变的患者会出现高张力性肌阵挛或惊吓病(OMIM 149400),其特征是对微小刺激产生过度的张力和惊吓反应,这可能导致新生儿出现呼吸暂停发作而导致致命后果。我们分析了 GlyT2 半胱氨酸残基的翻译后修饰,这是结构上的一个有趣方面。我们的研究与脊髓膜中可检测到的生化和蛋白质组学方法(酰基 Rac 结合和 IP-ABE)证实的可逆和短寿命 S-酰化兼容(棕榈酰化和非棕榈酰化蛋白的阳性和阴性对照)。根据短寿命修饰,使用点击化学的直接标记虽然微弱但基本一致。我们分析了缺乏高预测棕榈酰化半胱氨酸的 GlyT2 突变体的生理特性,并且该突变体不太容易被包含在脂筏中,在用棕榈酰化抑制剂 2-溴棕榈酸处理时也观察到这种效应。这项工作表明,与 GlyT2 突变半胱氨酸相关的脂筏包含决定因素,这些半胱氨酸可能通过棕榈酰化修饰。