Zhao Zhengfei, Wang Aoxuan, Chen Aosai, Zhao Yumeng, Hu Zhenglin, Wu Kai, Luo Jiayan
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.
Cell Product Department, Contemporary Amperex Technology Co., Ltd., 352100, Ningde, China.
Angew Chem Int Ed Engl. 2024 Nov 4;63(45):e202412239. doi: 10.1002/anie.202412239. Epub 2024 Sep 12.
Coulombic efficiency of over 99 % is rarely achieved for Li metal anode below -40 °C, hindering the practical application of high-energy-density Li metal batteries under extreme conditions. Herein, limiting factors for Li metal reversibility are investigated utilizing ether-based localized high-concentration electrolytes of different solvent-diluent combinations. We find that along with the desolvation barrier, bulk ion transport properties including ionic conductivity, transference number, and diffusivity are also crucial factors for low-temperature Li deposition behavior. Superior Li metal reversibility was observed within the combination of the solvent with moderately weak solvating power and the diluent with minimal viscosity, highlighting the role of ion transport and the necessity for a trade-off with desolvation. The optimized electrolyte composed of lithium bis(fluorosulfonyl)imide, methyl n-propyl ether, and 1,1,2,2-tetrafluoroethyl methyl ether delivers exceptional Coulombic efficiency of 99.34 % at -40 °C and 98.96 % at -60 °C under a current density of 0.5 mA cm. Furthermore, Li||LiCoO (2.7 mAh cm) cells demonstrate impressive reversible capacity and cycling stability at these temperatures. This work sheds light on the less-recognized relevance of bulk ion transport to low-temperature performance and provides guidelines for the electrolyte design of Li metal batteries operating in cold environments.
对于锂金属负极而言,在低于-40°C的温度下,很少能实现超过99%的库仑效率,这阻碍了高能量密度锂金属电池在极端条件下的实际应用。在此,利用不同溶剂-稀释剂组合的醚基局部高浓度电解质,研究了锂金属可逆性的限制因素。我们发现,除了去溶剂化势垒外,包括离子电导率、迁移数和扩散率在内的本体离子传输性质也是低温锂沉积行为的关键因素。在具有适度弱溶剂化能力的溶剂与具有最小粘度的稀释剂的组合中,观察到了优异的锂金属可逆性,突出了离子传输的作用以及与去溶剂化进行权衡的必要性。由双(氟磺酰)亚胺锂、甲基正丙基醚和1,1,2,2-四氟乙基甲基醚组成的优化电解质在-40°C下、电流密度为0.5 mA cm时,库仑效率高达99.34%,在-60°C时为98.96%。此外,Li||LiCoO₂(2.7 mAh cm²)电池在这些温度下表现出令人印象深刻的可逆容量和循环稳定性。这项工作揭示了本体离子传输与低温性能之间鲜为人知的相关性,并为在寒冷环境中运行的锂金属电池的电解质设计提供了指导。