Xu Jijian, Koverga Volodymyr, Phan An, Min Li Ai, Zhang Nan, Baek Minsung, Jayawardana Chamithri, Lucht Brett L, Ngo Anh T, Wang Chunsheng
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Adv Mater. 2024 Feb;36(7):e2306462. doi: 10.1002/adma.202306462. Epub 2023 Dec 7.
Anion solvation in electrolytes can largely change the electrochemical performance of the electrolytes, yet has been rarely investigated. Herein, three anions of bis(trifluoromethanesulfonyl)imide (TFSI), bis(fluorosulfonyl)imide (FSI), and derived asymmetric (fluorosulfonyl)(trifluoro-methanesulfonyl)imide (FTFSI) are systematically examined in a weakly Li cation solvating solvent of bis(3-fluoropropyl)ether (BFPE). In-situ liquid secondary ion mass spectrometry demonstrates that FTFSI and FSI anions are associated with BFPE solvent, while weak TFSI /BFPE cluster signals are detected. Molecular modeling further reveals that the anion-solvent interaction is accompanied by the formation of H-bonding-like interactions. Anion solvation enhances the Li cation transfer number and reduces the organic component in solid electrolyte interphase, which enhances the Li plating/stripping Coulombic efficiency at a low temperature of -30 °C from 42.4% in TFSI-based electrolytes to 98.7% in 1.5 m LiFTFSI and 97.9% in LiFSI-BFPE electrolytes. The anion-solvent interactions, especially asymmetric anion solvation also accelerate the Li desolvation kinetics. The 1.5 m LiFTFSI-BFPE electrolyte with strong anion-solvent interaction enables LiNi Mn Co O (NMC811)||Li (20 µm) full cell with stable cyclability even under -40 °C, retaining over 92% of initial capacity (115 mAh g , after 100 cycles). The anion-solvent interactions insights allow to rational design the electrolyte for lithium metal batteries and beyond to achieve high performance.
电解质中的阴离子溶剂化作用在很大程度上会改变电解质的电化学性能,但此前很少有人对此进行研究。在此,我们在双(3-氟丙基)醚(BFPE)这种对锂离子溶剂化作用较弱的溶剂中,系统地研究了双(三氟甲磺酰)亚胺(TFSI)、双(氟磺酰)亚胺(FSI)以及衍生的不对称(氟磺酰)(三氟甲磺酰)亚胺(FTFSI)这三种阴离子。原位液体二次离子质谱表明,FTFSI和FSI阴离子与BFPE溶剂相关联,同时检测到了较弱的TFSI/BFPE簇信号。分子模拟进一步揭示,阴离子与溶剂的相互作用伴随着类似氢键相互作用的形成。阴离子溶剂化作用提高了锂离子迁移数,并减少了固体电解质界面中的有机成分,从而将低温-30°C下锂电镀/剥离的库仑效率从基于TFSI的电解质中的42.4%提高到1.5 m LiFTFSI中的98.7%以及LiFSI-BFPE电解质中的97.9%。阴离子与溶剂的相互作用,尤其是不对称阴离子溶剂化作用,还加速了锂去溶剂化动力学。具有强阴离子与溶剂相互作用的1.5 m LiFTFSI-BFPE电解质能够使LiNiMnCoO(NMC811)||Li(20 µm)全电池即使在-40°C下也具有稳定的循环性能,在100次循环后仍保留超过92%的初始容量(115 mAh g)。对阴离子与溶剂相互作用的深入了解有助于合理设计锂金属电池及其他电池的电解质,以实现高性能。