Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Research Infrastructure Utilization Center, FITI Testing & Research Institute, 79 Magokjungang 8-ro 3-gil, Gangseo-gu, Seoul 07791, Republic of Korea.
Waste Manag. 2024 Oct 1;187:134-144. doi: 10.1016/j.wasman.2024.07.017. Epub 2024 Jul 19.
Here we report a novel chemical recycling of carbon fiber-reinforced plastic (CFRP) using meta-chloroperoxybenzoic acid (mCPBA) as the representative oxidizing agent. The optimal decomposition conditions for the epoxy (EP) resin in CFRP were investigated by varying mCPBA concentration and reaction time. The CFRP decomposed completely within 6 h using a 1.5 M mCPBA solution at 40 °C. Tensile strength of recovered CF (r-CF) measured 4.4 GPa, 93.6% of virgin CF (v-CF), and electrical conductivity reached 590 S/cm, 95% of v-CF. Furthermore, the interfacial shear strength (IFSS) of the recovered carbon fibers (r-CF) using EP resin and polyamide 6 (PA6) was analyzed. For EP resin, the IFSS of r-CF was 88 MPa, a 26 % increase compared to v-CF. In the case of PA6 resin, IFSS values were 80 MPa for r-CF, a 17% improvement over v-CF. The study highlights superior mechanical properties and favorable IFSS of r-CF, positioning them as promising for composite regeneration. Remarkably, this method operated at relatively low temperatures compared to existing technologies, with energy consumption recorded at 35 MJ/kg, establishing it as the most energy-efficient recycling method available.
在这里,我们报告了一种使用间氯过氧苯甲酸(mCPBA)作为代表性氧化剂的碳纤维增强塑料(CFRP)的新型化学回收方法。通过改变 mCPBA 浓度和反应时间,研究了 CFRP 中环氧树脂(EP)的最佳分解条件。在 40°C 下使用 1.5M 的 mCPBA 溶液,CFRP 在 6 小时内完全分解。回收 CF(r-CF)的拉伸强度为 4.4GPa,为 virgin CF(v-CF)的 93.6%,电导率达到 590 S/cm,为 v-CF 的 95%。此外,还分析了使用 EP 树脂和聚酰胺 6(PA6)回收碳纤维(r-CF)的界面剪切强度(IFSS)。对于 EP 树脂,r-CF 的 IFSS 为 88MPa,比 v-CF 提高了 26%。对于 PA6 树脂,r-CF 的 IFSS 值为 80MPa,比 v-CF 提高了 17%。该研究突出了 r-CF 的优异机械性能和良好的 IFSS,使其成为复合材料再生的有前途的材料。值得注意的是,与现有技术相比,该方法的操作温度相对较低,能耗记录为 35MJ/kg,使其成为最节能的回收方法。