Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
Pulmonary Division, Department of Medicine, National Jewish Health, Denver, Colorado, USA.
J Biol Chem. 2024 Aug;300(8):107594. doi: 10.1016/j.jbc.2024.107594. Epub 2024 Jul 18.
Drug metabolism is one of the main processes governing the pharmacokinetics and toxicity of drugs via their chemical biotransformation and elimination. In humans, the liver, enriched with cytochrome P450 (CYP) enzymes, plays a major metabolic and detoxification role. The gut microbiome and its complex community of microorganisms can also contribute to some extent to drug metabolism. However, during an infection when pathogenic microorganisms invade the host, our knowledge of the impact on drug metabolism by this pathobiome remains limited. The intrinsic resistance mechanisms and rapid metabolic adaptation to new environments often allow the human bacterial pathogens to persist, despite the many antibiotic therapies available. Here, we demonstrate that a bacterial CYP enzyme, CYP107S1, from Pseudomonas aeruginosa, a predominant bacterial pathogen in cystic fibrosis patients, can metabolize multiple drugs from different classes. CYP107S1 demonstrated high substrate promiscuity and allosteric properties much like human hepatic CYP3A4. Our findings demonstrated binding and metabolism by the recombinant CYP107S1 of fluoroquinolone antibiotics (ciprofloxacin and fleroxacin), a cystic fibrosis transmembrane conductance regulator potentiator (ivacaftor), and a selective estrogen receptor modulator antimicrobial adjuvant (raloxifene). Our in vitro metabolism data were further corroborated by molecular docking of each drug to the heme active site using a CYP107S1 homology model. Our findings raise the potential for microbial pathogens modulating drug concentrations locally at the site of infection, if not systemically, via CYP-mediated biotransformation reactions. To our knowledge, this is the first report of a CYP enzyme from a known bacterial pathogen that is capable of metabolizing clinically utilized drugs.
药物代谢是通过化学转化和消除来控制药物药代动力学和毒性的主要过程之一。在人体中,富含细胞色素 P450(CYP)酶的肝脏在代谢和解毒方面起着主要作用。肠道微生物组及其复杂的微生物群落也可以在一定程度上参与药物代谢。然而,在感染期间,当病原微生物侵入宿主时,我们对该病理生物组对药物代谢的影响的了解仍然有限。内在的耐药机制和对新环境的快速代谢适应,使得人类细菌病原体得以持续存在,尽管有许多抗生素治疗方法可用。在这里,我们证明了铜绿假单胞菌(一种主要的囊性纤维化患者细菌病原体)中的一种细菌 CYP 酶 CYP107S1 可以代谢来自不同类别的多种药物。CYP107S1 表现出高底物的混杂性和类似人类肝 CYP3A4 的变构特性。我们的研究结果表明,重组 CYP107S1 可以结合并代谢氟喹诺酮类抗生素(环丙沙星和左氧氟沙星)、囊性纤维化跨膜电导调节剂增强剂(依伐卡托)和选择性雌激素受体调节剂抗菌佐剂(雷洛昔芬)。我们的体外代谢数据进一步通过使用 CYP107S1 同源模型将每种药物对接至血红素活性位点的分子对接得到证实。我们的研究结果表明,如果不是通过全身途径,微生物病原体通过 CYP 介导的生物转化反应,有可能在感染部位局部调节药物浓度。据我们所知,这是首例报道能够代谢临床应用药物的已知细菌病原体中的 CYP 酶。