UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States.
UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States.
Methods. 2024 Oct;230:9-20. doi: 10.1016/j.ymeth.2024.07.004. Epub 2024 Jul 19.
Guanine-rich nucleic acids can form intramolecularly folded four-stranded structures known as G-quadruplexes (G4s). Traditionally, G4 research has focused on short, highly modified DNA or RNA sequences that form well-defined homogeneous compact structures. However, the existence of longer sequences with multiple G4 repeats, from proto-oncogene promoters to telomeres, suggests the potential for more complex higher-order structures with multiple G4 units that might offer selective drug-targeting sites for therapeutic development. These larger structures present significant challenges for structural characterization by traditional high-resolution methods like multi-dimensional NMR and X-ray crystallography due to their molecular complexity. To address this current challenge, we have developed an integrated structural biology (ISB) platform, combining experimental and computational methods to determine self-consistent molecular models of higher-order G4s (xG4s). Here we outline our ISB method using two recent examples from our lab, an extended c-Myc promoter and long human telomere G4 repeats, that highlights the utility and generality of our approach to characterizing biologically relevant xG4s.
富含鸟嘌呤的核酸可以形成分子内折叠的四链结构,称为 G-四链体 (G4s)。传统上,G4 研究集中在短的、高度修饰的 DNA 或 RNA 序列上,这些序列形成了定义明确的同型紧凑结构。然而,较长的序列具有多个 G4 重复,从原癌基因启动子到端粒,这表明可能存在具有多个 G4 单元的更复杂的高级结构,这些结构可能为治疗开发提供选择性的药物靶标。由于其分子复杂性,这些较大的结构对传统的高分辨率方法(如多维 NMR 和 X 射线晶体学)的结构特征提出了重大挑战。为了解决这一当前挑战,我们开发了一个集成结构生物学 (ISB) 平台,结合实验和计算方法来确定高阶 G4s(xG4s)的自洽分子模型。在这里,我们通过我们实验室的两个最近的例子概述了我们的 ISB 方法,一个扩展的 c-Myc 启动子和长的人类端粒 G4 重复,突出了我们的方法在表征生物学相关 xG4s 方面的实用性和通用性。