Guo Jiahuan, Feng Huili, Peng Changhui, Du Juan, Wang Weifeng, Kneeshaw Daniel, Pan Chang, Roberge Gabrielle, Feng Lei, Chen Anping
Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan 570228, China.
Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan 570228, China.
Sci Total Environ. 2024 Oct 20;948:174708. doi: 10.1016/j.scitotenv.2024.174708. Epub 2024 Jul 18.
Fire, as a natural disturbance, significantly shapes and influences the functions and services of terrestrial ecosystems via biotic and abiotic processes. Comprehending the influence of fire on soil greenhouse gas dynamics is crucial for understanding the feedback mechanisms between fire disturbances and climate change. Despite work on CO fluxes, there is a large uncertainty as to whether and how soil CH and NO fluxes change in response to fire disturbance in terrestrial ecosystems. To narrow this knowledge gap, we performed a meta-analysis synthesizing 3615 paired observations from 116 global studies. Our findings revealed that fire increased global soil CH uptake in uplands by 23.2 %, soil CH emissions from peatlands by 74.7 %, and soil NO emissions in terrestrial ecosystems (including upland and peatland) by 18.8 %. Fire increased soil CH uptake in boreal, temperate, and subtropical forests by 20.1 %, 38.8 %, and 30.2 %, respectively, and soil CH emissions in tropical forests by 193.3 %. Additionally, fire negatively affected soil total carbon (TC; -10.3 %), soil organic carbon (SOC; -15.6 %), microbial biomass carbon (MBC; -44.8 %), dissolved organic carbon (DOC; -27 %), microbial biomass nitrogen (MBN; -24.7 %), soil water content (SWC; -9.2 %), and water table depth (WTD; -68.2 %). Conversely, the fire increased soil bulk density (BD; +10.8 %), ammonium nitrogen (NH-N; +46 %), nitrate nitrogen (NO-N; +54 %), pH (+4.4 %), and soil temperature (+15.4 %). Our meta-regression analysis showed that the positive effects of fire on soil CH and NO emissions were significantly positively correlated with mean annual temperature (MAT) and mean annual precipitation (MAP), indicating that climate warming will amplify the positive effects of fire disturbance on soil CH and NO emissions. Taken together, since higher future temperatures are likely to prolong the fire season and increase the potential of fires, this could lead to positive feedback between warming, fire events, CH and NO emissions, and future climate change.
火灾作为一种自然干扰,通过生物和非生物过程显著塑造和影响陆地生态系统的功能与服务。理解火灾对土壤温室气体动态的影响对于认识火灾干扰与气候变化之间的反馈机制至关重要。尽管已有关于二氧化碳通量的研究,但陆地生态系统中土壤甲烷和氧化亚氮通量是否以及如何因火灾干扰而变化仍存在很大不确定性。为缩小这一知识差距,我们进行了一项荟萃分析,综合了来自116项全球研究的3615对观测数据。我们的研究结果表明,火灾使全球旱地土壤甲烷吸收量增加了23.2%,泥炭地土壤甲烷排放量增加了74.7%,陆地生态系统(包括旱地和泥炭地)土壤氧化亚氮排放量增加了18.8%。火灾使寒温带、温带和亚热带森林的土壤甲烷吸收量分别增加了20.1%、38.8%和30.2%,热带森林的土壤甲烷排放量增加了193.3%。此外,火灾对土壤总碳(TC;-10.3%)、土壤有机碳(SOC;-15.6%)、微生物生物量碳(MBC;-44.8%)、溶解有机碳(DOC;-27%)、微生物生物量氮(MBN;-24.7%)、土壤含水量(SWC;-9.2%)和地下水位深度(WTD;-68.2%)产生了负面影响。相反,火灾增加了土壤容重(BD;+10.8%)、铵态氮(NH-N;+46%)、硝态氮(NO-N;+54%)、pH值(+4.4%)和土壤温度(+15.4%)。我们的荟萃回归分析表明,火灾对土壤甲烷和氧化亚氮排放的积极影响与年均温度(MAT)和年均降水量(MAP)显著正相关,这表明气候变暖将放大火灾干扰对土壤甲烷和氧化亚氮排放的积极影响。综上所述,由于未来气温升高可能会延长火灾季节并增加火灾发生的可能性,这可能导致气候变暖、火灾事件、甲烷和氧化亚氮排放以及未来气候变化之间的正反馈。