Suppr超能文献

蛋白质语言模型能够预测单特异性、双特异性和仅重链抗体的多反应性。

Protein language models enable prediction of polyreactivity of monospecific, bispecific, and heavy-chain-only antibodies.

作者信息

Yu Xin, Vangjeli Kostika, Prakash Anusha, Chhaya Meha, Stanley Samantha J, Cohen Noah, Huang Lili

机构信息

Biotherapeutics and Genetic Medicine, AbbVie Bioresearch Center, Worcester, MA 01605, United States.

出版信息

Antib Ther. 2024 May 30;7(3):199-208. doi: 10.1093/abt/tbae012. eCollection 2024 Jul.

Abstract

BACKGROUND

Early assessment of antibody off-target binding is essential for mitigating developability risks such as fast clearance, reduced efficacy, toxicity, and immunogenicity. The baculovirus particle (BVP) binding assay has been widely utilized to evaluate polyreactivity of antibodies. As a complementary approach, computational prediction of polyreactivity is desirable for counter-screening antibodies from discovery campaigns. However, there is a lack of such models.

METHODS

Herein, we present the development of an ensemble of three deep learning models based on two pan-protein foundational protein language models (ESM2 and ProtT5) and an antibody-specific protein language model (PLM) (Antiberty). These models were trained in a transfer learning network to predict the outcomes in the BVP assay and the bovine serum albumin binding assay, which was developed as a complement to the BVP assay. The training was conducted on a large dataset of antibody sequences augmented with experimental conditions, which were collected through a highly efficient application system.

RESULTS

The resulting models demonstrated robust performance on canonical mAbs (monospecific with heavy and light chain), bispecific Abs, and single-domain Fc (VHH-Fc). PLMs outperformed a model built using molecular descriptors calculated from AlphaFold 2 predicted structures. Embeddings from the antibody-specific and foundational PLMs resulted in similar performance.

CONCLUSION

To our knowledge, this represents the first application of PLMs to predict assay data on bispecifics and VHH-Fcs.

摘要

背景

早期评估抗体的非靶向结合对于降低可开发性风险至关重要,例如快速清除、疗效降低、毒性和免疫原性。杆状病毒颗粒(BVP)结合试验已被广泛用于评估抗体的多反应性。作为一种补充方法,多反应性的计算预测对于从发现活动中反筛选抗体是很有必要的。然而,缺乏这样的模型。

方法

在此,我们展示了基于两种泛蛋白质基础蛋白质语言模型(ESM2和ProtT5)和一种抗体特异性蛋白质语言模型(PLM)(Antiberty)开发的三个深度学习模型的集成。这些模型在迁移学习网络中进行训练,以预测BVP试验和牛血清白蛋白结合试验的结果,牛血清白蛋白结合试验是作为BVP试验的补充而开发的。训练是在一个通过高效应用系统收集的、增加了实验条件的抗体序列大型数据集上进行的。

结果

所得模型在典型单克隆抗体(重链和轻链单特异性)、双特异性抗体和单域Fc(VHH-Fc)上表现出强大的性能。PLM的表现优于使用从AlphaFold 2预测结构计算的分子描述符构建的模型。抗体特异性和基础PLM的嵌入导致了相似的性能。

结论

据我们所知,这代表了PLM首次应用于预测双特异性抗体和VHH-Fc的试验数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/246a/11259759/17939b2d201e/tbae012f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验