Suppr超能文献

特征工程和参数调整:提高多环境硬粒小麦育种试验中表型预测能力。

Feature engineering and parameter tuning: improving phenomic prediction ability in multi-environmental durum wheat breeding trials.

机构信息

State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany.

出版信息

Theor Appl Genet. 2024 Jul 22;137(8):188. doi: 10.1007/s00122-024-04695-w.

Abstract

Optimized phenomic selection in durum wheat uses near-infrared spectra, feature engineering and parameter tuning. Our study reports improvements in predictive ability and emphasizes customized preprocessing for different traits and models. The success of plant breeding programs depends on efficient selection decisions. Phenomic selection has been proposed as a tool to predict phenotype performance based on near-infrared spectra (NIRS) to support selection decisions. In this study, we test the performance of phenomic selection in multi-environmental trials from our durum wheat breeding program for three breeding scenarios and use feature engineering as well as parameter tuning to improve the phenomic prediction ability. In addition, we investigate the influence of genotype and environment on the phenomic prediction ability for agronomic and quality traits. Preprocessing, based on a grid search over the Savitzky-Golay filter parameters based on 756,000 genotype best linear unbiased estimate (BLUE) computations, improved the phenomic prediction ability by up to 1500% (0.02-0.3). Furthermore, we show that preprocessing should be optimized depending on the dataset, trait, and model used for prediction. The phenomic prediction scenarios in our durum breeding program resulted in low-to-moderate prediction abilities with the highest and most stable prediction results when predicting new genotypes in the same environment as used for model training. This is consistent with the finding that NIRS capture both the genotype and genotype-by-environment interaction variance.

摘要

优化的硬质小麦表型选择利用近红外光谱、特征工程和参数调整。我们的研究报告改进了预测能力,并强调了针对不同性状和模型的定制预处理。植物育种计划的成功取决于高效的选择决策。表型选择已被提议作为一种根据近红外光谱(NIRS)预测表型性能的工具,以支持选择决策。在这项研究中,我们测试了我们的硬粒小麦育种计划在三个育种方案的多环境试验中表型选择的性能,并使用特征工程和参数调整来提高表型预测能力。此外,我们研究了基因型和环境对农艺和品质性状表型预测能力的影响。预处理基于基于 756000 个基因型最佳线性无偏估计(BLUE)计算的 Savitzky-Golay 滤波器参数的网格搜索,通过高达 1500%(0.02-0.3)提高了表型预测能力。此外,我们表明,预处理应根据用于预测的数据集、性状和模型进行优化。在我们的硬粒小麦育种计划中,表型预测方案的预测能力较低至中等,当在用于模型训练的相同环境中预测新基因型时,预测结果最高且最稳定。这与 NIRS 同时捕获基因型和基因型-环境互作方差的发现一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0564/11263437/3fac250fe1dc/122_2024_4695_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验