Suppr超能文献

小麦育种中的表型组选择:多环境育种试验中基因型与环境互作的预测

Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials.

作者信息

Robert Pauline, Goudemand Ellen, Auzanneau Jérôme, Oury François-Xavier, Rolland Bernard, Heumez Emmanuel, Bouchet Sophie, Caillebotte Antoine, Mary-Huard Tristan, Le Gouis Jacques, Rincent Renaud

机构信息

INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.

INRAE - Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, Clermont-Ferrand, France.

出版信息

Theor Appl Genet. 2022 Oct;135(10):3337-3356. doi: 10.1007/s00122-022-04170-4. Epub 2022 Aug 8.

Abstract

Phenomic prediction of wheat grain yield and heading date in different multi-environmental trial scenarios is accurate. Modelling the genotype-by-environment interaction effect using phenomic data is a potentially low-cost complement to genomic prediction. The performance of wheat cultivars in multi-environmental trials (MET) is difficult to predict because of the genotype-by-environment interactions (G × E). Phenomic selection is supposed to be efficient for modelling the G × E effect because it accounts for non-additive effects. Here, phenomic data are near-infrared (NIR) spectra obtained from plant material. While phenomic selection has recently been shown to accurately predict wheat grain yield in single environments, its accuracy needs to be investigated for MET. We used four datasets from two winter wheat breeding programs to test and compare the predictive abilities of phenomic and genomic models for grain yield and heading date in different MET scenarios. We also compared different methods to model the G × E using different covariance matrices based on spectra. On average, phenomic and genomic prediction abilities are similar in all different MET scenarios. Better predictive abilities were obtained when G × E effects were modelled with NIR spectra than without them, and it was better to use all the spectra of all genotypes in all environments for modelling the G × E. To facilitate the implementation of phenomic prediction, we tested MET designs where the NIR spectra were measured only on the genotype-environment combinations phenotyped for the target trait. Missing spectra were predicted with a weighted multivariate ridge regression. Intermediate predictive abilities for grain yield were obtained in a sparse testing scenario and for new genotypes, which shows that phenomic selection is an efficient and practicable prediction method for dealing with G × E.

摘要

在不同多环境试验场景下,对小麦籽粒产量和抽穗期进行表型组学预测是准确的。利用表型组学数据对基因型与环境互作效应进行建模,是基因组预测潜在的低成本补充。由于基因型与环境互作(G×E),小麦品种在多环境试验(MET)中的表现难以预测。表型组学选择被认为对建模G×E效应有效,因为它考虑了非加性效应。这里,表型组学数据是从植物材料获得的近红外(NIR)光谱。虽然最近已证明表型组学选择能在单一环境中准确预测小麦籽粒产量,但在多环境试验中的准确性仍需研究。我们使用了来自两个冬小麦育种项目的四个数据集,来测试和比较表型组学模型和基因组模型在不同多环境试验场景下对籽粒产量和抽穗期的预测能力。我们还比较了基于光谱使用不同协方差矩阵对G×E进行建模的不同方法。平均而言,在所有不同多环境试验场景下,表型组学和基因组预测能力相似。当用近红外光谱对G×E效应进行建模时,比不进行建模能获得更好的预测能力,并且使用所有环境中所有基因型的所有光谱来建模G×E效果更好。为便于实施表型组学预测,我们测试了多环境试验设计,其中仅对目标性状进行表型鉴定的基因型 - 环境组合测量近红外光谱。缺失光谱用加权多元岭回归进行预测。在稀疏测试场景和针对新基因型时,获得了中等的籽粒产量预测能力,这表明表型组学选择是处理G×E的一种有效且可行的预测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验