Suppr超能文献

蓝光损害细菌β-内酰胺酶活性以克服β-内酰胺耐药性。

Blue Light Compromises Bacterial β-Lactamases Activity to Overcome β-Lactam Resistance.

作者信息

Dos Anjos Carolina, Wang Yin, Truong-Bolduc Que Chi, Bolduc Paul K, Liu Matthew, Hooper David C, Anderson R Rox, Dai Tianhong, Leanse Leon G

机构信息

Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Division of Infectious Diseases and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Lasers Surg Med. 2024 Sep;56(7):673-681. doi: 10.1002/lsm.23819. Epub 2024 Jul 22.

Abstract

OBJECTIVE

In this study, we evaluated the effectiveness of antimicrobial blue light (aBL; 410 nm wavelength) against β-lactamase-carrying bacteria and the effect of aBL on the activity of β-lactamases.

METHODS

Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae strains carrying β-lactamases as well as a purified β-lactamase enzymes were studied. β-lactamase activity was assessed using a chromogenic cephalosporin hydrolysis assay. Additionally, we evaluated the role of porphyrins in the photoreaction, as well as protein degradation by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Finally, we investigated the bactericidal effect of combined aBL-ceftazidime exposure against a metallo-β-lactamase expressing P. aeruginosa strain.

RESULTS

Our study demonstrated that aBL effectively killed β-lactamase-producing bacteria and reduced β-lactamase activity. After an aBL exposure of 1.52 J/cm, a 50% reduction in enzymatic activity was observed in P. aeruginosa. Additionally, we found a 40% decrease in the photoreaction activity of porphyrins following an aBL exposure of 64.8 J/cm. We also revealed that aBL reduced β-lactamase activity via protein degradation (after 136.4 J/cm). Additionally, aBL markedly improved the bactericidal effect of ceftazidime (by >4-log) in the metallo-β-lactamase P. aeruginosa strain.

CONCLUSION

Our results provide evidence that aBL compromises bacterial β-lactamase activity, offering a potential approach to overcome β-lactam resistance in bacteria.

摘要

目的

在本研究中,我们评估了抗菌蓝光(aBL;波长410nm)对携带β-内酰胺酶细菌的有效性以及aBL对β-内酰胺酶活性的影响。

方法

研究了携带β-内酰胺酶的铜绿假单胞菌、大肠杆菌和肺炎克雷伯菌菌株以及纯化的β-内酰胺酶。使用显色头孢菌素水解试验评估β-内酰胺酶活性。此外,我们评估了卟啉在光反应中的作用,以及通过十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)进行的蛋白质降解。最后,我们研究了联合aBL-头孢他啶暴露对表达金属β-内酰胺酶的铜绿假单胞菌菌株的杀菌效果。

结果

我们的研究表明,aBL能有效杀死产生β-内酰胺酶的细菌并降低β-内酰胺酶活性。在aBL暴露1.52J/cm²后,观察到铜绿假单胞菌的酶活性降低了50%。此外,我们发现aBL暴露64.8J/cm²后,卟啉的光反应活性降低了40%。我们还发现aBL通过蛋白质降解降低β-内酰胺酶活性(在136.4J/cm²之后)。此外,aBL显著提高了头孢他啶对金属β-内酰胺酶铜绿假单胞菌菌株的杀菌效果(提高了>4个对数)。

结论

我们的结果提供了证据,表明aBL会损害细菌的β-内酰胺酶活性,为克服细菌中的β-内酰胺耐药性提供了一种潜在方法。

相似文献

1
Blue Light Compromises Bacterial β-Lactamases Activity to Overcome β-Lactam Resistance.
Lasers Surg Med. 2024 Sep;56(7):673-681. doi: 10.1002/lsm.23819. Epub 2024 Jul 22.
3
Mutations in cause hyperproduction of AmpC and CmcB β-lactamases and high resistance to β-lactam antibiotics in .
Microbiol Spectr. 2025 Aug 5;13(8):e0091625. doi: 10.1128/spectrum.00916-25. Epub 2025 Jun 12.
4
Spectrum of cefepime-taniborbactam coverage against 190 β-lactamases defined in engineered isogenic strains.
Antimicrob Agents Chemother. 2025 May 7;69(5):e0169924. doi: 10.1128/aac.01699-24. Epub 2025 Apr 1.
5
Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review.
Pathogens. 2025 Aug 6;14(8):777. doi: 10.3390/pathogens14080777.
6
Maximally precise combinations to overcome metallo-β-lactamase-producing .
Antimicrob Agents Chemother. 2024 Oct 8;68(10):e0077024. doi: 10.1128/aac.00770-24. Epub 2024 Sep 17.
9
Clinical outcomes of phenotype-guided treatment in group D carbapenemase-producing bacteremia.
Microbiol Spectr. 2025 Jul;13(7):e0027325. doi: 10.1128/spectrum.00273-25. Epub 2025 May 27.

引用本文的文献

1
Lights out for Superbugs: Is antimicrobial blue light a potential approach for future infection Control?
Adv Drug Deliv Rev. 2025 Sep;224:115654. doi: 10.1016/j.addr.2025.115654. Epub 2025 Jul 10.

本文引用的文献

1
Blue Light Potentiates Antibiotics in Bacteria via Parallel Pathways of Hydroxyl Radical Production and Enhanced Antibiotic Uptake.
Adv Sci (Weinh). 2023 Dec;10(36):e2303731. doi: 10.1002/advs.202303731. Epub 2023 Nov 9.
2
New Insights into the Bacterial Targets of Antimicrobial Blue Light.
Microbiol Spectr. 2023 Feb 21;11(2):e0283322. doi: 10.1128/spectrum.02833-22.
4
New β-Lactam-β-Lactamase Inhibitor Combinations.
Clin Microbiol Rev. 2020 Nov 11;34(1). doi: 10.1128/CMR.00115-20. Print 2020 Dec 16.
5
Antimicrobial blue light and photodynamic therapy inhibit clinically relevant β-lactamases with extended-spectrum (ESBL) and carbapenemase activity.
Photodiagnosis Photodyn Ther. 2020 Dec;32:102086. doi: 10.1016/j.pdpdt.2020.102086. Epub 2020 Nov 4.
6
Hypervirulent and hypermucoviscous strains of Klebsiella pneumoniae challenged by antimicrobial strategies using visible light.
Int J Antimicrob Agents. 2020 Jul;56(1):106025. doi: 10.1016/j.ijantimicag.2020.106025. Epub 2020 May 22.
7
Epidemiology of β-Lactamase-Producing Pathogens.
Clin Microbiol Rev. 2020 Feb 26;33(2). doi: 10.1128/CMR.00047-19. Print 2020 Mar 18.
8
Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance.
J Intensive Care. 2020 Jan 28;8:13. doi: 10.1186/s40560-020-0429-6. eCollection 2020.
9
Inactivation kinetics and lethal dose analysis of antimicrobial blue light and photodynamic therapy.
Photodiagnosis Photodyn Ther. 2019 Dec;28:186-191. doi: 10.1016/j.pdpdt.2019.08.022. Epub 2019 Aug 17.
10
An overview of the antimicrobial resistance mechanisms of bacteria.
AIMS Microbiol. 2018 Jun 26;4(3):482-501. doi: 10.3934/microbiol.2018.3.482. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验