Suppr超能文献

使用NLINV-Net进行自监督学习以改进无校准径向磁共振成像

Self-Supervised Learning for Improved Calibrationless Radial MRI with NLINV-Net.

作者信息

Blumenthal Moritz, Fantinato Chiara, Unterberg-Buchwald Christina, Haltmeier Markus, Wang Xiaoqing, Uecker Martin

出版信息

ArXiv. 2024 Jul 11:arXiv:2402.06550v3.

Abstract

PURPOSE

To develop a neural network architecture for improved calibrationless reconstruction of radial data when no ground truth is available for training.

METHODS

NLINV-Net is a model-based neural network architecture that directly estimates images and coil sensitivities from (radial) k-space data via non-linear inversion (NLINV). Combined with a training strategy using self-supervision via data undersampling (SSDU), it can be used for imaging problems where no ground truth reconstructions are available. We validated the method for (1) real-time cardiac imaging and (2) single-shot subspace-based quantitative T1 mapping. Furthermore, region-optimized virtual (ROVir) coils were used to suppress artifacts stemming from outside the FoV and to focus the k-space based SSDU loss on the region of interest. NLINV-Net based reconstructions were compared with conventional NLINV and PI-CS (parallel imaging + compressed sensing) reconstruction and the effect of the region-optimized virtual coils and the type of training loss was evaluated qualitatively.

RESULTS

NLINV-Net based reconstructions contain significantly less noise than the NLINV-based counterpart. ROVir coils effectively suppress streakings which are not suppressed by the neural networks while the ROVir-based focussed loss leads to visually sharper time series for the movement of the myocardial wall in cardiac real-time imaging. For quantitative imaging, T1-maps reconstructed using NLINV-Net show similar quality as PI-CS reconstructions, but NLINV-Net does not require slice-specific tuning of the regularization parameter.

CONCLUSION

NLINV-Net is a versatile tool for calibrationless imaging which can be used in challenging imaging scenarios where a ground truth is not available.

摘要

目的

开发一种神经网络架构,用于在没有可用的地面真值进行训练时改进径向数据的无校准重建。

方法

NLINV-Net是一种基于模型的神经网络架构,通过非线性反演(NLINV)直接从(径向)k空间数据估计图像和线圈灵敏度。结合使用数据欠采样自监督(SSDU)的训练策略,它可用于没有可用地面真值重建的成像问题。我们验证了该方法在(1)实时心脏成像和(2)基于单激发子空间的定量T1映射中的有效性。此外,使用区域优化虚拟(ROVir)线圈来抑制来自视野外的伪影,并将基于k空间的SSDU损失聚焦在感兴趣区域。将基于NLINV-Net的重建与传统的NLINV和PI-CS(并行成像+压缩感知)重建进行比较,并定性评估区域优化虚拟线圈和训练损失类型的效果。

结果

基于NLINV-Net的重建比基于NLINV的重建包含的噪声明显更少。ROVir线圈有效地抑制了神经网络无法抑制的条纹,而基于ROVir的聚焦损失在心脏实时成像中导致心肌壁运动的时间序列在视觉上更清晰。对于定量成像,使用NLINV-Net重建的T1图显示出与PI-CS重建相似的质量,但NLINV-Net不需要对正则化参数进行特定切片的调整。

结论

NLINV-Net是一种用于无校准成像的通用工具,可用于没有地面真值的具有挑战性的成像场景。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验