文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

免疫引用:一种用于分析免疫富集空间蛋白质组学数据的综合工作流程。

IMmuneCite: an integrated workflow for analysis of immune enriched spatial proteomic data.

作者信息

Barbetta Arianna, Bangerth Sarah, Lee Jason T C, Rocque Brittany, Roussos Torres Evanthia T, Kohli Rohit, Akbari Omid, Emamaullee Juliet

机构信息

University of Southern California.

University of Rochester.

出版信息

Res Sq. 2024 Jul 9:rs.3.rs-4571625. doi: 10.21203/rs.3.rs-4571625/v2.


DOI:10.21203/rs.3.rs-4571625/v2
PMID:39041033
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11261960/
Abstract

Spatial proteomics enable detailed analysis of tissue at single cell resolution. However, creating reliable segmentation masks and assigning accurate cell phenotypes to discrete cellular phenotypes can be challenging. We introduce IMmuneCite, a computational framework for comprehensive image pre-processing and single-cell dataset creation, focused on defining complex immune landscapes when using spatial proteomics platforms. We demonstrate that IMmuneCite facilitates the identification of 32 discrete immune cell phenotypes using data from human liver samples while substantially reducing nonbiological cell clusters arising from co-localization of markers for different cell lineages. We established its versatility and ability to accommodate any antibody panel and different species by applying IMmuneCite to data from murine liver tissue. This approach enabled deep characterization of different functional states in each immune compartment, uncovering key features of the immune microenvironment in clinical liver transplantation and murine hepatocellular carcinoma. In conclusion, we demonstrated that IMmuneCite is a user-friendly, integrated computational platform that facilitates investigation of the immune microenvironment across species, while ensuring the creation of an immune focused, spatially resolved single-cell proteomic dataset to provide high fidelity, biologically relevant analyses.

摘要

空间蛋白质组学能够在单细胞分辨率下对组织进行详细分析。然而,创建可靠的分割掩码并将准确的细胞表型分配给离散的细胞表型可能具有挑战性。我们引入了IMmuneCite,这是一个用于全面图像预处理和单细胞数据集创建的计算框架,专注于在使用空间蛋白质组学平台时定义复杂的免疫景观。我们证明,IMmuneCite利用来自人类肝脏样本的数据促进了32种离散免疫细胞表型的识别,同时大幅减少了因不同细胞谱系标记物共定位而产生的非生物细胞簇。通过将IMmuneCite应用于来自小鼠肝脏组织的数据,我们确立了其通用性以及适应任何抗体组合和不同物种的能力。这种方法能够深入表征每个免疫隔室中的不同功能状态,揭示临床肝移植和小鼠肝细胞癌中免疫微环境的关键特征。总之,我们证明IMmuneCite是一个用户友好的集成计算平台,它有助于跨物种研究免疫微环境,同时确保创建一个以免疫为重点、空间分辨的单细胞蛋白质组数据集,以提供高保真、生物学相关的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/da33d2a180c3/nihpp-rs4571625v2-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/b3b7367d5990/nihpp-rs4571625v2-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/7ef71cff66ed/nihpp-rs4571625v2-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/56711c344199/nihpp-rs4571625v2-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/6d7234b4f720/nihpp-rs4571625v2-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/d42f451cbe61/nihpp-rs4571625v2-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/43211b0f2e32/nihpp-rs4571625v2-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/61b9e000d503/nihpp-rs4571625v2-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/da33d2a180c3/nihpp-rs4571625v2-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/b3b7367d5990/nihpp-rs4571625v2-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/7ef71cff66ed/nihpp-rs4571625v2-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/56711c344199/nihpp-rs4571625v2-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/6d7234b4f720/nihpp-rs4571625v2-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/d42f451cbe61/nihpp-rs4571625v2-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/43211b0f2e32/nihpp-rs4571625v2-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/61b9e000d503/nihpp-rs4571625v2-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26f8/11261960/da33d2a180c3/nihpp-rs4571625v2-f0008.jpg

相似文献

[1]
IMmuneCite: an integrated workflow for analysis of immune enriched spatial proteomic data.

Res Sq. 2024-7-9

[2]
Integrated workflow for analysis of immune enriched spatial proteomic data with IMmuneCite.

Sci Rep. 2025-3-19

[3]
An image analysis pipeline to quantify the spatial distribution of cell markers in stroma-rich tumors.

bioRxiv. 2025-5-1

[4]
Point-cloud segmentation with in-silico data augmentation for prostate cancer treatment.

Med Phys. 2025-4-3

[5]
Short-Term Memory Impairment

2025-1

[6]
GRAPEVNE - Graphical Analytical Pipeline Development Environment for Infectious Diseases.

Wellcome Open Res. 2025-5-27

[7]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[8]
Eliciting adverse effects data from participants in clinical trials.

Cochrane Database Syst Rev. 2018-1-16

[9]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

[10]
Automated devices for identifying peripheral arterial disease in people with leg ulceration: an evidence synthesis and cost-effectiveness analysis.

Health Technol Assess. 2024-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索