Fortier-Lebel Nicolas, Nakajima Toshi
Département de neurosciences, Département de médecine, Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Groupe de recherche sur la signalisation neurale et la circuiterie, Université de Montréal, Montréal, Canada.
Department of Physiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan.
Neuroscientist. 2025 Jun;31(3):279-295. doi: 10.1177/10738584241263758. Epub 2024 Jul 23.
Multiple cortical motor areas are critically involved in the voluntary control of discrete movement (e.g., reaching) and gait. Here, we outline experimental findings in nonhuman primates with clinical reports and research in humans that explain characteristic movement control mechanisms in the primary, supplementary, and presupplementary motor areas, as well as in the dorsal premotor area. We then focus on single-neuron activity recorded while monkeys performed motor sequences consisting of multiple discrete movements, and we consider how area-specific control mechanisms may contribute to the performance of complex movements. Following this, we explore the motor areas in cats that we have considered as analogs of those in primates based on similarities in their cortical surface topology, anatomic connections, microstimulation effects, and activity patterns. Emphasizing that discrete movement and gait modification entail similar control mechanisms, we argue that single-neuron activity in each area of the cat during gait modification is compatible with the function ascribed to the activity in the corresponding area in primates, recorded during the performance of discrete movements. The findings that demonstrate the premotor areas' contribution to locomotion, currently unique to the cat model, should offer highly valuable insights into the control mechanisms of locomotion in primates, including humans.
多个皮质运动区在离散运动(如伸手)和步态的自主控制中起着关键作用。在此,我们结合临床报告以及对人类的研究,概述在非人类灵长类动物中的实验结果,这些结果解释了初级运动区、辅助运动区、前辅助运动区以及背侧运动前区的特征性运动控制机制。然后,我们关注猴子执行由多个离散运动组成的运动序列时记录的单神经元活动,并思考特定区域的控制机制如何有助于复杂运动的执行。在此之后,我们探索猫的运动区,基于其皮质表面拓扑结构、解剖连接、微刺激效应和活动模式的相似性,我们认为这些区域与灵长类动物的运动区类似。强调离散运动和步态改变需要相似的控制机制,我们认为在步态改变过程中猫的每个区域的单神经元活动与灵长类动物在执行离散运动时记录的相应区域活动所赋予的功能是相符的。目前在猫模型中独有的、证明运动前区对运动有贡献的研究结果,应该能为包括人类在内的灵长类动物的运动控制机制提供极具价值的见解。