Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria.
Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria.
Angew Chem Int Ed Engl. 2024 Oct 21;63(43):e202410681. doi: 10.1002/anie.202410681. Epub 2024 Sep 17.
The flexible acquisition of substrates from nutrient pools is critical for microbes to prevail in competitive environments. To acquire glucose from diverse glycoside and disaccharide substrates, many free-living and symbiotic bacteria have developed, alongside hydrolysis, a non-hydrolytic pathway comprised of four biochemical steps and conferred from a single glycoside utilization gene locus (GUL). Mechanistically, this pathway integrates within the framework of oxidation and reduction at the glucosyl/glucose C3, the eliminative cleavage of the glycosidic bond and the addition of water in two consecutive lyase-catalyzed reactions. Here, based on study of enzymes from the phytopathogen Agrobacterium tumefaciens, we reveal a conserved Mn metallocenter active site in both lyases and identify the structural requirements for specific catalysis to elimination of 3-keto-glucosides and water addition to the resulting 2-hydroxy-3-keto-glycal product, yielding 3-keto-glucose. Extending our search of GUL-encoded putative lyases to the human gut commensal Bacteroides thetaiotaomicron, we discover a Ca metallocenter active site in a putative glycoside hydrolase-like protein and demonstrate its catalytic function in the eliminative cleavage of 3-keto-glucosides of opposite (α) anomeric configuration as preferred by the A. tumefaciens enzyme (β). Structural and biochemical comparisons reveal the molecular-mechanistic origin of 3-keto-glucoside lyase stereo-complementarity. Our findings identify a basic set of GUL-encoded lyases for glucoside metabolism and assign physiological significance to GUL genetic diversity in the bacterial domain of life.
从营养池中灵活获取底物对微生物在竞争环境中生存至关重要。为了从各种糖苷和二糖底物中获取葡萄糖,许多自由生活和共生细菌除了水解作用外,还发展了一种非水解途径,该途径由四个生化步骤组成,并由单个糖苷利用基因座 (GUL) 赋予。从机制上讲,该途径整合了在葡萄糖基/葡萄糖 C3 的氧化和还原、糖苷键的消除裂解以及在两个连续的裂合酶催化反应中加水的框架内。在这里,基于对植物病原体根瘤农杆菌中酶的研究,我们在两种裂解酶中揭示了一个保守的 Mn 金属中心活性位点,并确定了特定催化所需的结构要求,以消除 3-酮-葡萄糖苷并加水生成所得 2-羟基-3-酮糖醛产物,生成 3-酮-葡萄糖。我们将 GUL 编码的推定裂解酶的搜索扩展到人类肠道共生拟杆菌,我们在推定的糖苷水解酶样蛋白中发现了一个 Ca 金属中心活性位点,并证明了其在消除 3-酮-葡萄糖苷方面的催化功能具有相反(α)端构型的优选(β)构型。结构和生化比较揭示了 3-酮-葡萄糖苷裂解酶立体互补性的分子机制起源。我们的发现确定了一套基本的 GUL 编码的糖苷酶用于糖苷代谢,并为细菌生命领域中 GUL 遗传多样性赋予了生理意义。