From the Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom and.
Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
J Biol Chem. 2019 May 10;294(19):7711-7721. doi: 10.1074/jbc.RA118.006626. Epub 2019 Mar 15.
The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiome. The selection pressures in this environment have spurred the evolution of a complex reservoir of microbial genes encoding carbohydrate-active enzymes (CAZymes). Previously, we have shown that the human gut bacterium () can depolymerize the most structurally complex glycan, the plant pectin rhamnogalacturonan II (RGII), commonly found in the human diet. Previous investigation of the RGII-degrading apparatus in identified BT0997 as a new CAZyme family, classified as glycoside hydrolase 138 (GH138). The mechanism of substrate recognition by GH138, however, remains unclear. Here, using synthetic substrates and biochemical assays, we show that BT0997 targets the d-galacturonic acid-α-1,2-l-rhamnose linkage in chain A of RGII and that it absolutely requires the presence of a second d-galacturonic acid side chain (linked β-1,3 to l-rhamnose) for activity. NMR analysis revealed that BT0997 operates through a double displacement retaining mechanism. We also report the crystal structure of a BT0997 homolog, BPA0997 from , in complex with ligands at 1.6 Å resolution. The structure disclosed that the enzyme comprises four domains, including a catalytic TIM (α/β) barrel. Characterization of several BT0997 variants identified Glu-294 and Glu-361 as the catalytic acid/base and nucleophile, respectively, and we observed a chloride ion close to the active site. The three-dimensional structure and bioinformatic analysis revealed that two arginines, Arg-332 and Arg-521, are key specificity determinants of BT0997 in targeting d-galacturonic acid residues. In summary, our study reports the first structural and mechanistic analyses of GH138 enzymes.
碳水化合物聚合物的代谢驱动人类肠道微生物组中的微生物多样性。这种环境中的选择压力刺激了微生物基因编码碳水化合物活性酶 (CAZymes) 的复杂库的进化。以前,我们已经表明,人类肠道细菌 () 可以分解最具结构复杂性的聚糖,即植物果胶鼠李半乳糖醛酸 II (RGII),它通常存在于人类饮食中。先前对 中 RGII 降解装置的研究将 BT0997 鉴定为一个新的 CAZyme 家族,归类为糖苷水解酶 138 (GH138)。然而,GH138 底物识别的机制仍不清楚。在这里,我们使用合成底物和生化测定表明,BT0997 靶向 RGII 链 A 中的 d-半乳糖醛酸-α-1,2-l-鼠李糖键,并且它绝对需要第二个 d-半乳糖醛酸侧链(与 l-鼠李糖连接β-1,3)的存在才有活性。NMR 分析表明,BT0997 通过双取代保留机制发挥作用。我们还报告了来自 的 BT0997 同源物 BPA0997 的晶体结构,在 1.6 Å 分辨率下与配体复合物。该结构揭示了该酶由四个结构域组成,包括催化 TIM(α/β)桶。对几个 BT0997 变体的特征分析确定 Glu-294 和 Glu-361 分别为催化酸碱和亲核试剂,并且我们观察到活性位点附近有一个氯离子。三维结构和生物信息学分析表明,两个精氨酸,Arg-332 和 Arg-521,是 BT0997 靶向 d-半乳糖醛酸残基的关键特异性决定因素。总之,我们的研究报告了 GH138 酶的第一个结构和机制分析。