Suppr超能文献

蛋白质黄素酰化在细菌胞外电子传递中的多功能作用。

Versatile roles of protein flavinylation in bacterial extracyotosolic electron transfer.

机构信息

Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA.

Department of Microbiology, University of Chicago, Chicago, Illinois, USA.

出版信息

mSystems. 2024 Aug 20;9(8):e0037524. doi: 10.1128/msystems.00375-24. Epub 2024 Jul 23.

Abstract

UNLABELLED

Bacteria perform diverse redox chemistries in the periplasm, cell wall, and extracellular space. Electron transfer for these extracytosolic activities is frequently mediated by proteins with covalently bound flavins, which are attached through post-translational flavinylation by the enzyme ApbE. Despite the significance of protein flavinylation to bacterial physiology, the basis and function of this modification remain unresolved. Here we apply genomic context analyses, computational structural biology, and biochemical studies to address the role of ApbE flavinylation throughout bacterial life. We identify ApbE flavinylation sites within structurally diverse protein domains and show that multi-flavinylated proteins, which may mediate longer distance electron transfer via multiple flavinylation sites, exhibit substantial structural heterogeneity. We identify two novel classes of flavinylation substrates that are related to characterized proteins with non-covalently bound flavins, providing evidence that protein flavinylation can evolve from a non-covalent flavoprotein precursor. We further find a group of structurally related flavinylation-associated cytochromes, including those with the domain of unknown function DUF4405, that presumably mediate electron transfer in the cytoplasmic membrane. DUF4405 homologs are widespread in bacteria and related to ferrosome iron storage organelle proteins that may facilitate iron redox cycling within ferrosomes. These studies reveal a complex basis for flavinylated electron transfer and highlight the discovery power of coupling comparative genomic analyses with high-quality structural models.

IMPORTANCE

This study explores the mechanisms bacteria use to transfer electrons outside the cytosol, a fundamental process involved in energy metabolism and environmental interactions. Central to this process is a phenomenon known as flavinylation, where a flavin molecule-a compound related to vitamin B2-is covalently attached to proteins, to enable electron transfer. We employed advanced genomic analysis and computational modeling to explore how this modification occurs across different bacterial species. Our findings uncover new types of proteins that undergo this modification and highlight the diversity and complexity of bacterial electron transfer mechanisms. This research broadens our understanding of bacterial physiology and informs potential biotechnological applications that rely on microbial electron transfer, including bioenergy production and bioremediation.

摘要

未加标签

细菌在细胞质周质、细胞壁和细胞外空间中进行多种氧化还原化学。这些细胞外活动的电子转移通常由共价结合黄素的蛋白质介导,这些蛋白质通过 ApbE 酶的翻译后黄素化附着。尽管蛋白质黄素化对细菌生理学具有重要意义,但这种修饰的基础和功能仍未得到解决。在这里,我们应用基因组背景分析、计算结构生物学和生化研究来解决 ApbE 黄素化在整个细菌生命过程中的作用。我们确定了结构多样化的蛋白质结构域内的 ApbE 黄素化位点,并表明多黄素化蛋白质可能通过多个黄素化位点介导更长距离的电子转移,表现出显著的结构异质性。我们确定了两类新的黄素化底物,它们与具有非共价结合黄素的特征蛋白有关,这为蛋白质黄素化可以从非共价黄素蛋白前体进化提供了证据。我们进一步发现了一组结构相关的黄素化相关细胞色素,包括具有未知功能结构域 DUF4405 的细胞色素,它们可能在细胞质膜中介导电子转移。DUF4405 同源物在细菌中广泛存在,与铁硫体铁储存细胞器蛋白有关,这些蛋白可能促进铁硫体中的铁氧化还原循环。这些研究揭示了黄素化电子转移的复杂基础,并强调了将比较基因组分析与高质量结构模型相结合的发现能力。

意义

本研究探讨了细菌在细胞外转移电子的机制,这是能量代谢和环境相互作用中涉及的一个基本过程。这个过程的核心是一种被称为黄素化的现象,其中黄素分子——一种与维生素 B2 相关的化合物——被共价地连接到蛋白质上,以实现电子转移。我们采用了先进的基因组分析和计算建模来探索这种修饰在不同细菌物种中的发生方式。我们的发现揭示了新的蛋白质类型,这些蛋白质经历了这种修饰,并强调了细菌电子转移机制的多样性和复杂性。这项研究拓宽了我们对细菌生理学的理解,并为依赖微生物电子转移的潜在生物技术应用提供了信息,包括生物能源生产和生物修复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0045/11334425/00767387b64b/msystems.00375-24.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验