Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.
Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA.
mBio. 2023 Feb 28;14(1):e0308522. doi: 10.1128/mbio.03085-22. Epub 2023 Feb 6.
A variety of electron transfer mechanisms link bacterial cytosolic electron pools with functionally diverse redox activities in the cell envelope and extracellular space. In Listeria monocytogenes, the ApbE-like enzyme FmnB catalyzes extracytosolic protein flavinylation, covalently linking a flavin cofactor to proteins that transfer electrons to extracellular acceptors. L. monocytogenes uses an energy-coupling factor (ECF) transporter complex that contains distinct substrate-binding, transmembrane, ATPase A, and ATPase A' subunits (RibU, EcfT, EcfA, and EcfA') to import environmental flavins, but the basis of extracytosolic flavin trafficking for FmnB flavinylation remains poorly defined. In this study, we show that the EetB and FmnA proteins are related to ECF transporter substrate-binding and transmembrane subunits, respectively, and are essential for exporting flavins from the cytosol for flavinylation. Comparisons of the flavin import versus export capabilities of L. monocytogenes strains lacking different ECF transporter subunits demonstrate a strict directionality of substrate-binding subunit transport but partial functional redundancy of transmembrane and ATPase subunits. Based on these results, we propose that ECF transporter complexes with different subunit compositions execute directional flavin import/export through a broadly conserved mechanism. Finally, we present genomic context analyses that show that related ECF exporter genes are distributed across members of the phylum and frequently colocalize with genes encoding flavinylated extracytosolic proteins. These findings clarify the basis of ECF transporter export and extracytosolic flavin cofactor trafficking in Firmicutes. Bacteria import vitamins and other essential compounds from their surroundings but also traffic related compounds from the cytosol to the cell envelope where they serve various functions. Studying the foodborne pathogen Listeria monocytogenes, we find that the modular use of subunits from a prominent class of bacterial transporters enables the import of environmental vitamin B cofactors and the extracytosolic trafficking of a vitamin B-derived cofactor that facilitates redox reactions in the cell envelope. These studies clarify the basis of bidirectional small-molecule transport across the cytoplasmic membrane and the assembly of redox-active proteins within the cell envelope and extracellular space.
各种电子转移机制将细菌细胞质电子池与细胞包膜和细胞外空间中功能多样的氧化还原活性联系起来。在李斯特菌中,ApbE 样酶 FmnB 催化细胞外蛋白质黄素化,将黄素辅因子共价连接到将电子转移到细胞外受体的蛋白质上。李斯特菌使用能量偶联因子 (ECF) 转运体复合物,该复合物包含不同的底物结合、跨膜、ATPase A 和 ATPase A' 亚基(RibU、EcfT、EcfA 和 EcfA')来导入环境黄素,但 FmnB 黄素化的细胞外黄素转运的基础仍未得到很好的定义。在这项研究中,我们表明 EetB 和 FmnA 蛋白分别与 ECF 转运体的底物结合和跨膜亚基相关,对于将黄素从细胞质中导出进行黄素化是必不可少的。比较缺乏不同 ECF 转运体亚基的李斯特菌菌株的黄素导入与导出能力表明,底物结合亚基转运具有严格的方向性,但跨膜和 ATPase 亚基具有部分功能冗余。基于这些结果,我们提出 ECF 转运体复合物具有不同的亚基组成,通过广泛保守的机制执行黄素的定向导入/导出。最后,我们提出基因组上下文分析表明,相关的 ECF 外排基因分布在门成员中,并经常与编码细胞外黄素化蛋白质的基因共定位。这些发现阐明了 ECF 转运体在厚壁菌门中的导出和细胞外黄素辅因子转运的基础。细菌从周围环境中导入维生素和其他必需化合物,但也将相关化合物从细胞质运输到细胞包膜,在那里它们发挥各种功能。在研究食源性病原体李斯特菌时,我们发现,一类重要的细菌转运体的亚基的模块化使用使环境维生素 B 辅因子的导入和细胞外黄素辅因子的运输成为可能,该辅因子促进细胞包膜中的氧化还原反应。这些研究阐明了细胞质膜两侧小分子的双向转运和细胞包膜和细胞外空间中氧化还原活性蛋白的组装的基础。