Manohar Akshay, Viswanathan Aranganathan, Lee Yun-Sung, Aravindan Vanchiappan
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517619, India.
School of Chemical Engineering, Chonnam National University, Gwang-ju, 61186, Republic of Korea.
ChemSusChem. 2025 Jan 2;18(1):e202400449. doi: 10.1002/cssc.202400449. Epub 2024 Oct 10.
Here, we have developed lithium-ion capacitors (LICs) with all the components, except the electrolyte solution, effectively recycled from the spent Lithium-ion batteries (LIBs). Hybrid capacitors, such as LICs, are potential breakthroughs in electrochemical energy storage devices, where most research is focused. These devices can simultaneously guarantee high energy and power by hybridizing battery-type and capacitive-type electrodes with two different reaction mechanisms. We have successfully upcycled the graphite, current collector, separator, etc., from the spent LIBs to fabricate a high-performance LIC. Our LIC consists of recovered graphite (RG) coated over recovered copper foil as an anode, recycled polypropylene as the separator, and reduced graphene oxide (rGO) synthesized from RG as the cathode. The RG half-cell exhibited an excellent specific capacity of 302 mAh g even after 75 charge-discharge cycles with a coulombic efficiency of >99 %. The Li/rGO displayed remarkable cycling performance for over 1000 cycles with high stability and reversibility. Subsequently, the pre-lithiated RG (p-RG) electrode is paired with the rGO electrode under the balanced loading conditions to construct LIC, rGO/p-RG, delivering a maximum energy density of 185 Wh kg with ultra-long durability of more than 10,000 cycles. The possibility of LIC under different climatic conditions is also explored, and its remarkable performance under various temperature conditions is worth mentioning.
在此,我们开发了锂离子电容器(LIC),其所有组件(除电解液外)均有效地从废旧锂离子电池(LIB)中回收利用。诸如LIC之类的混合电容器是电化学储能设备中潜在的突破,也是目前大多数研究的重点。通过将具有两种不同反应机制的电池型电极和电容型电极进行混合,这些设备可以同时保证高能量和高功率。我们已成功地将废旧LIB中的石墨、集流体、隔膜等升级再造,以制造高性能的LIC。我们的LIC由涂覆在回收铜箔上的回收石墨(RG)作为阳极、回收的聚丙烯作为隔膜以及由RG合成的还原氧化石墨烯(rGO)作为阴极组成。即使在75次充放电循环后,RG半电池仍表现出302 mAh g的优异比容量,库仑效率>99%。Li/rGO在超过1000次循环中表现出卓越的循环性能,具有高稳定性和可逆性。随后,在平衡负载条件下,将预锂化的RG(p-RG)电极与rGO电极配对,构建LIC,即rGO/p-RG,其最大能量密度为185 Wh kg,具有超过10000次循环的超长耐久性。我们还探索了LIC在不同气候条件下的可能性,其在各种温度条件下的卓越性能值得一提。