Suppr超能文献

全面立体定向放射外科平台特性描述:一种新型的端到端方法,采用人体 3D 剂量学。

Comprehensive stereotactic radiosurgery platform characterization: A novel end-to-end approach with anthropomorphic 3D dosimetry.

机构信息

Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA.

Department of Chemistry, Rider University, Lawrenceville, New Jersey, USA.

出版信息

Med Phys. 2024 Nov;51(11):8524-8537. doi: 10.1002/mp.17321. Epub 2024 Jul 23.

Abstract

BACKGROUND

Stereotactic radiosurgery (SRS) is a widely employed strategy for intracranial metastases, utilizing linear accelerators and volumetric modulated arc therapy (VMAT). Ensuring precise linear accelerator performance is crucial, given the small planning target volume (PTV) margins. Rapid dose falloff is vital to minimize brain radiation necrosis. Despite advances in SRS planning, tools for end-to-end testing of SRS treatments are lacking, hindering confidence in the procedure.

PURPOSE

This study introduces a novel end-to-end three-dimensional (3D) anthropomorphic dosimetry system for characterization of a radiosurgery platform, aiming to measure planning metrics, dose gradient index (DGI), brain volumes receiving at least 10 and 12 Gy (V10, V12), as well as assess delivery uncertainties in multitarget treatments. The study also compares metrics from benchmark plans to enhance understanding and confidence in SRS treatments.

METHODS

The developed anthropomorphic 3D dosimetry system includes a modified Stereotactic End-to-End Verification (STEEV) phantom with a customized insert integrating 3D dosimeters and a fiber optic CT scanner. Labview and MATLAB programs handle optical scanning, image preprocessing, and dosimetric analysis. SlicerRT is used for 3D dose visualization and analysis. A film stack insert was used to validate the 3D dosimeter measurements at specific slices. Benchmark plans were developed and measured to investigate off-axis errors, dose spillage, small field dosimetry, and multi-target delivery.

RESULTS

The accuracy of the developed 3D dosimetry system was rigorously assessed using radiochromic films. Two two-dimensional (2D) dose planes, extracted from the 3D dose distribution, were compared with film measurements, resulting in high passing rates of 99.9% and 99.6% in gamma tests. The mean relative dose difference between film and 3D dosimeter measurements was -1%, with a standard deviation of 2.2%, well within dosimeter uncertainties. In the first module, evaluating single-isocenter multitarget treatments, a 1.5 mm dose distribution shift was observed when targets were 7 cm off-axis. This shift was attributed to machine mechanical errors and image-guided system uncertainties, indicating potential limitations in conventional gamma tests. The second module investigated discrepancies in intermediate-to-low dose spillage, revealing higher measured doses in the connecting region between closely positioned targets. This discrepancy was linked to uncertainties in treatment planning system (TPS) modeling of out-of-field dose and multileaf collimator (MLC) characteristics, resulting in lower DGI values and higher V10 and V12 values compared to TPS calculations. In the third module, irradiating multiple targets showed consistent V10 and V12 values within 1 cm agreement with dose calculations. However, lower DGI values from measurements compared to calculations suggested intricacies in the treatment process. Conducting vital end-to-end testing demonstrated the anthropomorphic 3D dosimetry system's capacity to assess overall treatment uncertainty, offering a valuable tool for enhancing treatment accuracy in radiosurgery platforms.

CONCLUSIONS

The study introduces a novel anthropomorphic 3D dosimetry system for end-to-end testing of a radiosurgery platform. The system effectively measures plan quality metrics, captures mechanical errors, and visualizes dose discrepancies in 3D space. The comprehensive evaluation capability enhances confidence in the commissioning and verification process, ensuring patient safety. The system is recommended for commissioning new radiosurgery platforms and remote auditing of existing programs.

摘要

背景

立体定向放射外科(SRS)是一种广泛应用于颅内转移瘤的策略,使用直线加速器和容积调强弧形治疗(VMAT)。鉴于小的计划靶区(PTV)边缘,确保直线加速器的精确性能至关重要。快速剂量下降对于最大限度地减少脑放射性坏死至关重要。尽管 SRS 计划取得了进展,但缺乏用于 SRS 治疗端到端测试的工具,这阻碍了人们对该程序的信心。

目的

本研究引入了一种新的端到端三维(3D)人体模体剂量学系统,用于表征放射外科平台,旨在测量计划指标、剂量梯度指数(DGI)、至少接受 10 和 12Gy 的脑体积(V10、V12),并评估多靶治疗中的输送不确定性。该研究还比较了基准计划的指标,以增强对 SRS 治疗的理解和信心。

方法

开发的人体 3D 剂量学系统包括一个经过修改的立体定向端到端验证(STEEV)体模,带有一个定制的插入件,集成了 3D 剂量计和光纤 CT 扫描仪。Labview 和 MATLAB 程序用于处理光学扫描、图像预处理和剂量分析。SlicerRT 用于 3D 剂量可视化和分析。使用胶片堆叠插入件在特定切片处验证 3D 剂量计测量值。开发并测量基准计划,以研究离轴误差、剂量泄漏、小场剂量学和多靶输送。

结果

使用放射色胶片对开发的 3D 剂量学系统的准确性进行了严格评估。从 3D 剂量分布中提取的两个二维(2D)剂量平面与胶片测量结果进行比较,伽马测试的通过率分别为 99.9%和 99.6%。胶片和 3D 剂量计测量值之间的平均相对剂量差异为-1%,标准偏差为 2.2%,在剂量计不确定度范围内。在第一个模块中,评估了单等中心多靶治疗,当目标偏离中心 7cm 时,观察到 1.5mm 的剂量分布偏移。这种偏移归因于机器机械误差和图像引导系统不确定性,表明常规伽马测试存在潜在局限性。第二个模块研究了中间到低剂量泄漏的差异,显示在紧密定位的靶标之间的连接区域中测量的剂量更高。这种差异与治疗计划系统(TPS)对场外剂量和多叶准直器(MLC)特性建模的不确定性有关,导致 DGI 值和 V10 和 V12 值低于 TPS 计算值。在第三个模块中,照射多个靶标时,V10 和 V12 值在 1cm 内与剂量计算一致。然而,与计算值相比,测量值的较低 DGI 值表明治疗过程的复杂性。进行关键的端到端测试证明了人体模体 3D 剂量学系统评估整体治疗不确定性的能力,为提高放射外科平台的治疗准确性提供了有价值的工具。

结论

本研究介绍了一种用于放射外科平台端到端测试的新型人体模体 3D 剂量学系统。该系统能够有效地测量计划质量指标,捕捉机械误差,并在 3D 空间中可视化剂量差异。全面的评估能力增强了对调试和验证过程的信心,确保了患者的安全。该系统建议用于新的放射外科平台的调试和现有计划的远程审核。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验