Department of Basic and Applied Medical Sciences, Molecular Physiology and Neurophysics Group, Ghent University, Ghent, Belgium.
Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
J Gen Physiol. 2024 Oct 7;156(10). doi: 10.1085/jgp.202413563. Epub 2024 Jul 23.
ω-Grammotoxin-SIA (GrTX-SIA) was originally isolated from the venom of the Chilean rose tarantula and demonstrated to function as a gating modifier of voltage-gated Ca2+ (CaV) channels. Later experiments revealed that GrTX-SIA could also inhibit voltage-gated K+ (KV) channel currents via a similar mechanism of action that involved binding to a conserved S3-S4 region in the voltage-sensing domains (VSDs). Since voltage-gated Na+ (NaV) channels contain homologous structural motifs, we hypothesized that GrTX-SIA could inhibit members of this ion channel family as well. Here, we show that GrTX-SIA can indeed impede the gating process of multiple NaV channel subtypes with NaV1.6 being the most susceptible target. Moreover, molecular docking of GrTX-SIA onto NaV1.6, supported by a p.E1607K mutation, revealed the voltage sensor in domain IV (VSDIV) as being a primary site of action. The biphasic manner in which current inhibition appeared to occur suggested a second, possibly lower-sensitivity binding locus, which was identified as VSDII by using KV2.1/NaV1.6 chimeric voltage-sensor constructs. Subsequently, the NaV1.6p.E782K/p.E838K (VSDII), NaV1.6p.E1607K (VSDIV), and particularly the combined VSDII/VSDIV mutant lost virtually all susceptibility to GrTX-SIA. Together with existing literature, our data suggest that GrTX-SIA recognizes modules in NaV channel VSDs that are conserved among ion channel families, thereby allowing it to act as a comprehensive ion channel gating modifier peptide.
ω-芋螺毒素-SIA(GrTX-SIA)最初从智利玫瑰狼蛛的毒液中分离出来,被证明可以作为电压门控 Ca2+(CaV)通道的门控调节剂发挥作用。后来的实验表明,GrTX-SIA 还可以通过一种类似的作用机制抑制电压门控 K+(KV)通道电流,该机制涉及与电压感应域(VSD)中的保守 S3-S4 区域结合。由于电压门控 Na+(NaV)通道包含同源结构基序,我们假设 GrTX-SIA 也可以抑制该离子通道家族的成员。在这里,我们表明 GrTX-SIA 确实可以阻碍多种 NaV 通道亚型的门控过程,其中 NaV1.6 是最易受影响的靶标。此外,GrTX-SIA 与 NaV1.6 的分子对接,得到支持的 p.E1607K 突变,表明 IV 域(VSDIV)的电压传感器是主要作用部位。电流抑制似乎以双相方式发生,这表明存在第二个可能的低敏感性结合位点,该位点通过使用 KV2.1/NaV1.6 嵌合电压传感器构建体被鉴定为 VSDII。随后,NaV1.6p.E782K/p.E838K(VSDII)、NaV1.6p.E1607K(VSDIV),特别是组合的 VSDII/VSDIV 突变体几乎失去了对 GrTX-SIA 的所有敏感性。结合现有文献,我们的数据表明,GrTX-SIA 识别 NaV 通道 VSD 中的模块,这些模块在离子通道家族中是保守的,从而使其能够作为一种全面的离子通道门控调节剂肽。