Wang Ke, Song Xitong, Cui Boya, Wang Yi, Luo Wei
The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian 351100, China.
J Agric Food Chem. 2025 Jan 8;73(1):646-654. doi: 10.1021/acs.jafc.4c07640. Epub 2024 Dec 26.
Ectoine is a valuable compatible solute with extensive applications in bioengineering, cosmetics, medicine, and the food industry. While certain halophilic bacteria can naturally produce ectoine, as a model organism for biomanufacturing, offers significant advantages to be engineered for potentially high-level ectoine production. However, complex metabolic flux distributions and byproduct formation present bottlenecks that limit ectoine production in . In this study, we aimed to enhance ectoine production in BL21(DE3) through systematic metabolic engineering strategies. We investigated the effects of the gene cluster sequence, plasmid copy number, and key gene copy number on ectoine synthesis. Using the original sequence with the high-copy-number plasmid pRSFDuet-1 resulted in the highest level of ectoine production. Knocking out genes encoding homoserine dehydrogenase and diaminopimelate decarboxylase reduced competing pathways, further increasing ectoine yield. Overexpression of aspartate semialdehyde dehydrogenase, aspartate kinase I (*), aspartate aminotransferase, and aspartate ammonia-lyase () was performed, and optimal gene copy numbers were determined. When the copy numbers of * and were both three, ectoine synthesis improved, reaching 1.91 g/L. Enhancing the oxaloacetate pool by overexpressing phosphoenolpyruvate carboxylase () or introducing pyruvate carboxylase () from further increased ectoine production to 4.99 g/L. Balancing NADPH and ATP levels through cofactor engineering contributed to additional production improvements. Combining these strain engineering strategies, we ultimately constructed strain C24, which produced 35.33 g/L ectoine in a 5 L fermenter with a glucose conversion rate of 0.21 g/g. These results demonstrate that targeted metabolic engineering can significantly enhance ectoine production in , providing a foundation for industrial-scale production.
四氢嘧啶是一种有价值的相容性溶质,在生物工程、化妆品、医药和食品工业中有广泛应用。虽然某些嗜盐细菌能天然产生四氢嘧啶,但作为生物制造的模式生物,为实现潜在的高水平四氢嘧啶生产而进行工程改造具有显著优势。然而,复杂的代谢通量分布和副产物形成存在瓶颈,限制了四氢嘧啶在[具体生物名称未给出]中的生产。在本研究中,我们旨在通过系统的代谢工程策略提高[具体生物名称未给出] BL21(DE3)中四氢嘧啶的产量。我们研究了[具体基因簇名称未给出]基因簇序列、质粒拷贝数和关键基因拷贝数对四氢嘧啶合成的影响。使用带有高拷贝数质粒pRSFDuet-1的原始[具体基因簇名称未给出]序列导致了最高水平的四氢嘧啶生产。敲除编码高丝氨酸脱氢酶和二氨基庚二酸脱羧酶的基因减少了竞争途径,进一步提高了四氢嘧啶产量。进行了天冬氨酸半醛脱氢酶、天冬氨酸激酶I()、天冬氨酸转氨酶和天冬氨酸氨裂解酶()的过表达,并确定了最佳基因拷贝数。当和的拷贝数均为三个时,四氢嘧啶合成得到改善,达到1.91 g/L。通过过表达磷酸烯醇式丙酮酸羧化酶()或引入来自[具体生物名称未给出]的丙酮酸羧化酶()来增强草酰乙酸库,进一步将四氢嘧啶产量提高到4.99 g/L。通过辅因子工程平衡NADPH和ATP水平有助于进一步提高产量。结合这些菌株工程策略,我们最终构建了菌株C24,其在5 L发酵罐中产生了35.33 g/L四氢嘧啶,葡萄糖转化率为0.21 g/g。这些结果表明,有针对性的代谢工程可以显著提高[具体生物名称未给出]中四氢嘧啶的产量,为工业规模生产奠定了基础。