文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过介电纳米颗粒层实现的自驱动单极电流体动力学打印

Self-Driven, Monopolar Electrohydrodynamic Printing via Dielectric Nanoparticle Layer.

作者信息

Wang Hongyang, Ye Dong, Li Aokang, Zhang Bo, Guo Wang, Wang Baoli, Wang Ziru, Wu Qingshuang, Zhao Chenyang, Zhang Guan-Jun, Huang YongAn

机构信息

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China.

Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, P.R. China.

出版信息

Nano Lett. 2024 Aug 7;24(31):9511-9519. doi: 10.1021/acs.nanolett.4c01926. Epub 2024 Jul 23.


DOI:10.1021/acs.nanolett.4c01926
PMID:39042397
Abstract

Electrohydrodynamic printing holds both ultrahigh-resolution fabrication capability and unmatched ink-viscosity compatibility yet fails on highly insulating thick/irregular substrates. Herein, we proposed a single-potential driven electrohydrodynamic printing process with submicrometer resolution on arbitrary nonconductive targets, regardless of their geometric shape or sizes, via precoating with an ultrathin dielectric nanoparticle layer. Benefiting from the favorable Maxwell-Wagner polarization, the reversely polarized spot brought about a significant drop (∼57% for ceramics) in the operation voltage as its induced electric field and a negligible residual charge accumulation. Thus, ordered micro/nanostructures with line widths down to 300 nm were directly written at a stage speed as low as 5 mm/s, and silver features with width of ∼2 μm or interval of ∼4 μm were achieved on insulating substrates separately. Flexible sensors and curved heaters were then high-precision printed and demonstrated successfully, presenting this technique with huge potential for fabricating flexible/conformal electronics on arbitrary 3D structures.

摘要

电流体动力学打印具有超高分辨率制造能力和无与伦比的油墨粘度兼容性,但在高度绝缘的厚/不规则基板上却存在不足。在此,我们提出了一种单电势驱动的电流体动力学打印工艺,通过预涂覆超薄介电纳米颗粒层,可在任意非导电目标上实现亚微米分辨率的打印,而无需考虑其几何形状或尺寸。得益于有利的麦克斯韦-瓦格纳极化,反向极化点由于其感应电场导致操作电压显著下降(陶瓷约为57%),且残余电荷积累可忽略不计。因此,线宽低至300 nm的有序微/纳米结构能够以低至5 mm/s的阶段速度直接写入,并且在绝缘基板上分别实现了宽度约为2 μm或间距约为4 μm的银图案。随后,柔性传感器和曲面加热器被高精度打印并成功展示,表明该技术在任意3D结构上制造柔性/共形电子器件具有巨大潜力。

相似文献

[1]
Self-Driven, Monopolar Electrohydrodynamic Printing via Dielectric Nanoparticle Layer.

Nano Lett. 2024-8-7

[2]
Coaxial Electrohydrodynamic Printing of Microscale Core-Shell Conductive Features for Integrated Fabrication of Flexible Transparent Electronics.

ACS Appl Mater Interfaces. 2024-1-10

[3]
Transient charge-driven 3D conformal printing via pulsed-plasma impingement.

Proc Natl Acad Sci U S A. 2024-5-28

[4]
Rapid Fabrication of High-Resolution Flexible Electronics via Nanoparticle Self-Assembly and Transfer Printing.

Nano Lett. 2024-1-31

[5]
Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.

Nanoscale. 2018-4-19

[6]
Electrohydrodynamic Printed Ultra-Micro AgNPs Thin Film Temperature Sensors Array for High-Resolution Sensing.

Micromachines (Basel). 2023-8-17

[7]
Fabrication of Low-Cost Resistance Temperature Detectors and Micro-Heaters by Electrohydrodynamic Printing.

Micromachines (Basel). 2022-8-28

[8]
Ultrathin Ceramic Piezoelectric Films via Room-Temperature Electrospray Deposition of ZnO Nanoparticles for Printed GHz Devices.

ACS Appl Mater Interfaces. 2019-8-14

[9]
Temperature-Sensing Inks Using Electrohydrodynamic Inkjet Printing Technology.

Materials (Basel). 2021-9-27

[10]
Silver Nano-Inks Synthesized with Biobased Polymers for High-Resolution Electrohydrodynamic Printing Toward In-Space Manufacturing.

ACS Appl Mater Interfaces. 2024-8-21

引用本文的文献

[1]
Unleashing the Potential of Electroactive Hybrid Biomaterials and Self-Powered Systems for Bone Therapeutics.

Nanomicro Lett. 2024-10-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索