Suppr超能文献

用于高分辨率电流体动力打印以实现太空制造的生物基聚合物合成银纳米墨水

Silver Nano-Inks Synthesized with Biobased Polymers for High-Resolution Electrohydrodynamic Printing Toward In-Space Manufacturing.

作者信息

Kirscht Tyler, Jiang Liangkui, Liu Fei, Jiang Xuepeng, Marander Matthew, Ortega Ricardo, Qin Hantang, Jiang Shan

机构信息

Department of Material Science and Engineering, Iowa State University, Ames, Iowa 50011, United States.

Department of Industrial and Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 21;16(33):44225-44235. doi: 10.1021/acsami.4c07592. Epub 2024 Jul 30.

Abstract

Electrohydrodynamic (EHD) printing is an additive manufacturing technique capable of producing micro/nanoscale features by precisely jetting ink under an electric field. However, as a new technique compared to more conventional methods, commercially available inks designed and optimized for EHD are currently very limited. To address this challenge, a new silver nanoink platform was developed by synthesizing silver nanoparticles with biobased polymer 2-hydroxyethyl cellulose (HEC). Typically used as a thickening agent, HEC is cost-effect, biocompatible, and versatile in developing inks that meet the rheology criteria for high-resolution EHD jetting. This approach significantly outperforms the traditional use of polyvinylpyrrolidone (PVP), enabling the stabilization of high solids content (>50 wt %) nanoinks for over 10 months with an HEC dosage 20 times lower than that required by PVP. The HEC-synthesized silver ink displays excellent electrical properties, yielding resistivities as low as 2.81 μΩ cm upon sintering, less than twice that of pure silver. Additionally, the capability to sinter at low temperatures (<200 °C) enables the use of this ink on polymer substrates for flexible devices. The synthesized nanoinks were also found to be capable of producing precise, high-resolution features by EHD printing with smooth lines narrower than 5 μm printed using a 100 μm nozzle. Additionally, a semiempirical model was developed to reveal the relationship between printing resolution, ink properties, and printing parameters, enabling precise printing control. Moreover, for the first time, the unique ability of EHD to achieve precise fabrication under microgravity was conclusively demonstrated through a parabolic flight test utilizing the HEC-based nanoinks. The study greatly expands the potential of printing thin films for the on-demand manufacturing of electronic devices in space.

摘要

电流体动力学(EHD)打印是一种增材制造技术,能够通过在电场作用下精确喷射墨水来制造微/纳米级特征。然而,与更传统的方法相比,作为一种新技术,目前专门为EHD设计和优化的市售墨水非常有限。为了应对这一挑战,通过将银纳米颗粒与生物基聚合物2-羟乙基纤维素(HEC)合成,开发了一种新的银纳米墨水平台。HEC通常用作增稠剂,成本效益高、具有生物相容性,并且在开发符合高分辨率EHD喷射流变学标准的墨水方面用途广泛。这种方法明显优于传统使用的聚乙烯吡咯烷酮(PVP),能够在HEC用量比PVP所需用量低20倍的情况下,使高固体含量(>50 wt%)的纳米墨水稳定超过10个月。由HEC合成的银墨水显示出优异的电学性能,烧结后电阻率低至2.81μΩ·cm,不到纯银电阻率的两倍。此外,在低温(<200°C)下烧结的能力使得这种墨水能够用于聚合物基板上制造柔性器件。还发现合成的纳米墨水能够通过EHD打印产生精确的高分辨率特征,使用100μm喷嘴打印出的线条光滑且窄于5μm。此外,还开发了一个半经验模型来揭示打印分辨率、墨水性能和打印参数之间的关系,从而实现精确的打印控制。此外,通过利用基于HEC的纳米墨水进行的抛物线飞行试验,首次确凿地证明了EHD在微重力条件下实现精确制造的独特能力。这项研究极大地扩展了为太空电子设备按需制造打印薄膜的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验