Suppr超能文献

利用高密度肌电图和卷积神经网络从动态运动中学习手部模型

Learning a Hand Model From Dynamic Movements Using High-Density EMG and Convolutional Neural Networks.

作者信息

Simpetru Raul C, Arkudas Andreas, Braun Dominik I, Osswald Marius, de Oliveira Daniela Souza, Eskofier Bjoern, Kinfe Thomas M, Vecchio Alessandro Del

出版信息

IEEE Trans Biomed Eng. 2024 Dec;71(12):3556-3568. doi: 10.1109/TBME.2024.3432800. Epub 2024 Nov 21.

Abstract

OBJECTIVE

Surface electromyography (sEMG) can sense the motor commands transmitted to the muscles. This work presents a deep learning method that can decode the electrophysiological activity of the forearm muscles into the movements of the human hand.

METHODS

We have recorded the kinematics and kinetics of the hand during a wide range of grasps and individual digit movements that cover 22 degrees of freedom of the hand at slow (0.5 Hz) and comfortable (1.5 Hz) movement speeds in 13 healthy participants. The input of the model consists of 320 non-invasive EMG sensors placed on the extrinsic hand muscles.

RESULTS

Our network achieves accurate continuous estimation of both kinematics and kinetics, surpassing the performance of comparable networks reported in the literature. By examining the latent space of the network, we find evidence that it mapped EMG activity into the anatomy of the hand at the individual digit level. In contrast to what is observed from the low-pass filtered EMG and linear decoding approaches, we found that the full-bandwidth EMG (monopolar unfiltered) signals during synergistic and individual digit movements contain distinct neural embeddings that encode each movement of the human hand. These manifolds consistently represent the anatomy of the hand and are generalized across participants. Moreover, we found a task-specific distribution of the embeddings without any presence of correlated activations during multi- and individual-digit tasks.

CONCLUSION/SIGNIFICANCE: The proposed method could advance the control of assistive hand devices by providing a robust and intuitive interface between muscle signals and hand movements.

摘要

目的

表面肌电图(sEMG)能够感知传输至肌肉的运动指令。本研究提出一种深度学习方法,可将前臂肌肉的电生理活动解码为人类手部的运动。

方法

我们记录了13名健康参与者在多种抓握和单个手指运动过程中的手部运动学和动力学数据,这些运动涵盖了手部22个自由度,运动速度为缓慢(0.5Hz)和舒适(1.5Hz)。模型的输入由放置在外在手肌上的320个非侵入性肌电图传感器组成。

结果

我们的网络实现了对运动学和动力学的准确连续估计,超越了文献中报道的可比网络的性能。通过检查网络的潜在空间,我们发现有证据表明它在单个手指水平上将肌电图活动映射到手部解剖结构上。与从低通滤波肌电图和线性解码方法中观察到的情况相反,我们发现协同运动和单个手指运动期间的全带宽肌电图(单极未滤波)信号包含独特的神经嵌入,这些嵌入编码了人类手部的每个运动。这些流形始终代表手部的解剖结构,并且在参与者之间具有普遍性。此外,我们发现了嵌入的任务特定分布,在多手指和单个手指任务期间没有任何相关激活的存在。

结论/意义:所提出的方法可以通过在肌肉信号和手部运动之间提供强大且直观的接口来推进辅助手部设备的控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验