Suppr超能文献

产后子宫内膜炎预测模型的建立与验证。

Development and validation of a predictive model for postpartum endometritis.

机构信息

Department of Infectology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.

Department of Medical, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.

出版信息

PLoS One. 2024 Jul 23;19(7):e0307542. doi: 10.1371/journal.pone.0307542. eCollection 2024.

Abstract

OBJECTIVE

The aim was to develop a predictive tool for anticipating postpartum endometritis occurrences and to devise strategies for prevention and control.

METHODS

Employing a retrospective approach, the baseline data of 200 women diagnosed with postpartum endometritis in a tertiary maternity hospital in Zhejiang Province, spanning from February 2020 to September 2022, was examined. Simultaneously, the baseline data of 1,000 women without endometritis during the same period were explored with a 1:5 ratio. Subsequently, 1,200 women were randomly allocated into a training group dataset and a test group dataset, adhering to a 7:3 split. The selection of risk factors for postpartum endometritis involved employing random forests, lasso regression, and traditional univariate and multifactor logistic regression on the training group dataset. A nomogram was then constructed based on these factors. The model's performance was assessed using the area under the curve (AUC), calculated through plotting the receiver operating characteristic (ROC) curve. Additionally, the Brier score was employed to evaluate the model with a calibration curve. To gauge the utility of the nomogram, a clinical impact curve (CIC) analysis was conducted. This comprehensive approach not only involved identifying risk factors but also included a visual representation (nomogram) and thorough evaluation metrics, ensuring a robust tool for predicting, preventing, and controlling postpartum endometritis.

RESULTS

In the multivariate analysis, six factors were identified as being associated with the occurrence of maternal endometritis in the postpartum period. These factors include the number of negative finger tests (OR: 1.159; 95%CI: 1.091-1.233; P < 0.05), postpartum hemorrhage (1.003; 1.002-1.005; P < 0.05), pre-eclampsia (9.769; 4.64-21.155; P < 0.05), maternity methods (2.083; 1.187-3.7; P < 0.001), prenatal reproductive tract culture (2.219; 1.411-3.47; P < 0.05), and uterine exploration (0.441; 0.233-0.803; P < 0.001).A nomogram was then constructed based on these factors, and its predictive performance was assessed using the area under the curve (AUC). The results in both the training group data (AUC: 0.803) and the test group data (AUC: 0.788) demonstrated a good predictive value. The clinical impact curve (CIC) further highlighted the clinical utility of the nomogram.

CONCLUSION

The development of an individualized nomogram for postpartum endometritis infection holds promise for doctors in screening high-risk women, enabling early intervention and ultimately reducing the rate of postpartum endometritis infection. This comprehensive approach, integrating key risk factors and predictive tools, enhances the potential for timely and targeted medical intervention.

摘要

目的

旨在开发一种预测工具,以预测产后子宫内膜炎的发生,并制定预防和控制策略。

方法

采用回顾性方法,对 2020 年 2 月至 2022 年 9 月在浙江省一家三级妇产医院诊断为产后子宫内膜炎的 200 名妇女的基线数据进行了检查。同时,同期对 1000 名无子宫内膜炎的妇女的基线数据进行了研究,比例为 1:5。随后,将 1200 名妇女随机分配到训练组数据集和测试组数据集,采用 7:3 的比例。采用随机森林、套索回归以及传统单因素和多因素逻辑回归对训练组数据集进行产后子宫内膜炎的风险因素选择。然后基于这些因素构建了一个列线图。通过绘制受试者工作特征(ROC)曲线,计算曲线下面积(AUC)来评估模型的性能。此外,采用校准曲线评估模型的 Brier 评分。为了评估列线图的实用性,进行了临床影响曲线(CIC)分析。这种综合方法不仅涉及识别风险因素,还包括可视化表示(列线图)和全面的评估指标,为预测、预防和控制产后子宫内膜炎提供了一个稳健的工具。

结果

多因素分析中,有 6 个因素被确定与产后产妇子宫内膜炎的发生有关。这些因素包括阴性手指试验次数(OR:1.159;95%CI:1.091-1.233;P < 0.05)、产后出血(1.003;1.002-1.005;P < 0.05)、子痫前期(9.769;4.64-21.155;P < 0.05)、分娩方式(2.083;1.187-3.7;P < 0.001)、产前生殖道培养(2.219;1.411-3.47;P < 0.05)和子宫探查(0.441;0.233-0.803;P < 0.001)。然后基于这些因素构建了一个列线图,并通过曲线下面积(AUC)评估了其预测性能。在训练组数据(AUC:0.803)和测试组数据(AUC:0.788)中的结果均显示出了良好的预测价值。临床影响曲线(CIC)进一步突出了列线图的临床实用性。

结论

开发一种针对产后子宫内膜炎感染的个体化列线图,有望为医生筛查高危妇女提供帮助,从而实现早期干预,并最终降低产后子宫内膜炎感染的发生率。这种综合方法,综合了关键的风险因素和预测工具,提高了及时和有针对性的医疗干预的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/946a/11265687/3ca6dd58fde5/pone.0307542.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验