Tao Renhao, Ammenwerth Maximilian, Gyger Flavien, Bloch Immanuel, Zeiher Johannes
<a href="https://ror.org/01vekys64">Max-Planck-Institut für Quantenoptik</a>, 85748 Garching, Germany.
<a href="https://ror.org/04xrcta15">Munich Center for Quantum Science and Technology (MCQST)</a>, 80799 Munich, Germany.
Phys Rev Lett. 2024 Jul 5;133(1):013401. doi: 10.1103/PhysRevLett.133.013401.
Recent advances in quantum simulation based on neutral atoms have largely benefited from high-resolution, single-atom sensitive imaging techniques. A variety of approaches have been developed to achieve such local detection of atoms in optical lattices or optical tweezers. For alkaline-earth and alkaline-earth-like atoms, the presence of narrow optical transitions opens up the possibility of performing novel types of Sisyphus cooling, where the cooling mechanism originates from the capability to spatially resolve the differential optical level shifts in the trap potential. Up to now, it has been an open question whether high-fidelity imaging could be achieved in a "repulsive Sisyphus" configuration, where the trap depth of the ground state exceeds that of the excited state involved in cooling. Here, we demonstrate high-fidelity (99.971(1)%) and high-survival (99.80(5)%) imaging of strontium atoms using repulsive Sisyphus cooling. We use an optical lattice as a pinning potential for atoms in a large-scale tweezer array with up to 399 tweezers and show repeated, high-fidelity lattice-tweezer-lattice transfers. We furthermore demonstrate loading the lattice with approximately 10 000 atoms directly from the MOT and scalable imaging over >10 000 lattice sites with a combined survival probability and classification fidelity better than 99.2%. Our lattice thus serves as a locally addressable and sortable reservoir for continuous refilling of optical tweezer arrays in the future.
基于中性原子的量子模拟的最新进展在很大程度上受益于高分辨率、单原子灵敏成像技术。人们已经开发出多种方法来实现对光学晶格或光镊中原子的这种局部探测。对于碱土原子和类碱土原子,窄光学跃迁的存在开启了执行新型西西弗斯冷却的可能性,其中冷却机制源于在捕获势中空间分辨差分光学能级移动的能力。到目前为止,在“排斥性西西弗斯”配置中能否实现高保真成像一直是一个悬而未决的问题,在这种配置中,基态的陷阱深度超过了冷却过程中涉及的激发态的陷阱深度。在这里,我们展示了使用排斥性西西弗斯冷却对锶原子进行的高保真(99.971(1)%)和高存活率(99.80(5)%)成像。我们使用光学晶格作为大规模光镊阵列中原子的钉扎势,该阵列最多有399个光镊,并展示了重复的、高保真的晶格 - 光镊 - 晶格转移。我们还展示了直接从磁光阱向晶格中加载约10000个原子,并在超过10000个晶格位点上进行可扩展成像,其综合存活率和分类保真度优于99.2%。因此,我们的晶格在未来可作为一个可局部寻址和分类的储存库,用于连续补充光镊阵列。