Tong Chuyao, Ginzel Florian, Kurzmann Annika, Garreis Rebekka, Ostertag Lara, Gerber Jonas D, Huang Wei Wister, Watanabe Kenji, Taniguchi Takashi, Burkard Guido, Danon Jeroen, Ihn Thomas, Ensslin Klaus
Solid State Physics Laboratory, <a href="https://ror.org/05a28rw58">ETH Zurich</a>, CH-8093 Zurich, Switzerland.
Department of Physics, <a href="https://ror.org/0546hnb39">University of Konstanz</a>, D-78457 Konstanz, Germany.
Phys Rev Lett. 2024 Jul 5;133(1):017001. doi: 10.1103/PhysRevLett.133.017001.
The spin degrees of freedom is crucial for the understanding of any condensed matter system. Knowledge of spin-mixing mechanisms is not only essential for successful control and manipulation of spin qubits, but also uncovers fundamental properties of investigated devices and material. For electrostatically defined bilayer graphene quantum dots, in which recent studies report spin-relaxation times T_{1} up to 50 ms with strong magnetic field dependence, we study spin-blockade phenomena at charge configuration (1,2)↔(0,3). We examine the dependence of the spin-blockade leakage current on interdot tunnel coupling and on the magnitude and orientation of externally applied magnetic field. In out-of-plane magnetic field, the observed zero-field current peak could arise from finite-temperature cotunneling with the leads; though involvement of additional spin- and valley-mixing mechanisms are necessary for explaining the persistent sharp side peaks observed. In in-plane magnetic field, we observe a zero-field current dip, attributed to the competition between the spin Zeeman effect and the Kane-Mele spin-orbit interaction. Details of the line shape of this current dip, however, suggest additional underlying mechanisms are at play.
自旋自由度对于理解任何凝聚态物质系统都至关重要。自旋混合机制的知识不仅对于成功控制和操纵自旋量子比特至关重要,而且还揭示了所研究器件和材料的基本特性。对于静电定义的双层石墨烯量子点,近期研究报道其在强磁场依赖性下自旋弛豫时间(T_{1})可达50毫秒,我们研究了电荷构型(1,2)↔(0,3)时的自旋阻塞现象。我们研究了自旋阻塞泄漏电流对量子点间隧道耦合以及外加磁场大小和方向的依赖性。在面外磁场中,观测到的零场电流峰可能源于与引线的有限温度共隧穿;不过,要解释观测到的持续尖锐边峰,还需要额外的自旋和能谷混合机制参与。在面内磁场中,我们观测到一个零场电流谷,这归因于自旋塞曼效应和凯恩 - 梅勒自旋轨道相互作用之间的竞争。然而,这个电流谷线形的细节表明还有其他潜在机制在起作用。